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Description
Stata has a suite of commands for fitting, forecasting, interpreting, and performing inference

on vector error-correction models (VECMs) with cointegrating variables. After fitting a VECM, the
irf commands can be used to obtain impulse–response functions (IRFs) and forecast-error variance
decompositions (FEVDs). The table below describes the available commands.

Fitting a VECM
vec [TS] vec Fit vector error-correction models

Model diagnostics and inference
vecrank [TS] vecrank Estimate the cointegrating rank of a VECM
veclmar [TS] veclmar Perform LM test for residual autocorrelation

after vec
vecnorm [TS] vecnorm Test for normally distributed disturbances after vec
vecstable [TS] vecstable Check the stability condition of VECM estimates
varsoc [TS] varsoc Obtain lag-order selection statistics for VARs

and VECMs

Forecasting from a VECM
fcast compute [TS] fcast compute Compute dynamic forecasts after var, svar, or vec
fcast graph [TS] fcast graph Graph forecasts after fcast compute

Working with IRFs and FEVDs
irf [TS] irf Create and analyze IRFs and FEVDs

This manual entry provides an overview of the commands for VECMs; provides an introduction
to integration, cointegration, estimation, inference, and interpretation of VECM models; and gives an
example of how to use Stata’s vec commands.

Remarks and examples
vec estimates the parameters of cointegrating VECMs. You may specify any of the five trend

specifications in Johansen (1995, sec. 5.7). By default, identification is obtained via the Johansen
normalization, but vec allows you to obtain identification by placing your own constraints on
the parameters of the cointegrating vectors. You may also put more restrictions on the adjustment
coefficients.

vecrank is the command for determining the number of cointegrating equations. vecrank im-
plements Johansen’s multiple trace test procedure, the maximum eigenvalue test, and a method based
on minimizing either of two different information criteria.
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Because Nielsen (2001) has shown that the methods implemented in varsoc can be used to choose
the order of the autoregressive process, no separate vec command is needed; you can simply use
varsoc. veclmar tests that the residuals have no serial correlation, and vecnorm tests that they are
normally distributed.

All the irf routines described in [TS] irf are available for estimating, interpreting, and managing
estimated IRFs and FEVDs for VECMs.

Remarks are presented under the following headings:

Introduction to cointegrating VECMs
What is cointegration?
The multivariate VECM specification
Trends in the Johansen VECM framework

VECM estimation in Stata
Selecting the number of lags
Testing for cointegration
Fitting a VECM
Fitting VECMs with Johansen’s normalization
Postestimation specification testing
Impulse–response functions for VECMs
Forecasting with VECMs

Introduction to cointegrating VECMs

This section provides a brief introduction to integration, cointegration, and cointegrated vector
error-correction models. For more details about these topics, see Hamilton (1994), Johansen (1995),
Lütkepohl (2005), Watson (1994), and Becketti (2020).

What is cointegration?

Standard regression techniques, such as ordinary least squares (OLS), require that the variables
be covariance stationary. A variable is covariance stationary if its mean and all its autocovariances
are finite and do not change over time. Cointegration analysis provides a framework for estimation,
inference, and interpretation when the variables are not covariance stationary.

Instead of being covariance stationary, many economic time series appear to be “first-difference
stationary”. This means that the level of a time series is not stationary but its first difference is. First-
difference stationary processes are also known as integrated processes of order 1, or I(1) processes.
Covariance-stationary processes are I(0). In general, a process whose dth difference is stationary is
an integrated process of order d, or I(d).

The canonical example of a first-difference stationary process is the random walk. This is a variable
xt that can be written as

xt = xt−1 + εt (1)

where the εt are independent and identically distributed with mean zero and a finite variance σ2.
Although E[xt] = 0 for all t, Var[xt] = Tσ2 is not time invariant, so xt is not covariance stationary.
Because ∆xt = xt − xt−1 = εt and εt is covariance stationary, xt is first-difference stationary.

These concepts are important because, although conventional estimators are well behaved when
applied to covariance-stationary data, they have nonstandard asymptotic distributions and different
rates of convergence when applied to I(1) processes. To illustrate, consider several variants of the
model

yt = a+ bxt + et (2)

Throughout the discussion, we maintain the assumption that E[et] = 0.
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854 vec intro — Introduction to vector error-correction models

If both yt and xt are covariance-stationary processes, et must also be covariance stationary. As
long as E[xtet] = 0, we can consistently estimate the parameters a and b by using OLS. Furthermore,
the distribution of the OLS estimator converges to a normal distribution centered at the true value as
the sample size grows.

If yt and xt are independent random walks and b = 0, there is no relationship between yt and
xt, and (2) is called a spurious regression. Granger and Newbold (1974) performed Monte Carlo
experiments and showed that the usual t statistics from OLS regression provide spurious results: given
a large enough dataset, we can almost always reject the null hypothesis of the test that b = 0 even
though b is in fact zero. Here the OLS estimator does not converge to any well-defined population
parameter.

Phillips (1986) later provided the asymptotic theory that explained the Granger and Newbold (1974)
results. He showed that the random walks yt and xt are first-difference stationary processes and that
the OLS estimator does not have its usual asymptotic properties when the variables are first-difference
stationary.

Because ∆yt and ∆xt are covariance stationary, a simple regression of ∆yt on ∆xt appears to
be a viable alternative. However, if yt and xt cointegrate, as defined below, the simple regression of
∆yt on ∆xt is misspecified.

If yt and xt are I(1) and b 6= 0, et could be either I(0) or I(1). Phillips and Durlauf (1986) have
derived the asymptotic theory for the OLS estimator when et is I(1), though it has not been widely
used in applied work. More interesting is the case in which et = yt − a− bxt is I(0). yt and xt are
then said to be cointegrated. Two variables are cointegrated if each is an I(1) process but a linear
combination of them is an I(0) process.

It is not possible for yt to be a random walk and xt and et to be covariance stationary. As
Granger (1981) pointed out, because a random walk cannot be equal to a covariance-stationary
process, the equation does not “balance”. An equation balances when the processes on each side
of the equal sign are of the same order of integration. Before attacking any applied problem with
integrated variables, make sure that the equation balances before proceeding.

An example from Engle and Granger (1987) provides more intuition. Redefine yt and xt to be

yt + βxt = εt, εt = εt−1 + ξt (3)

yt + αxt = νt, νt = ρνt−1 + ζt, |ρ| < 1 (4)

where ξt and ζt are i.i.d. disturbances over time that are correlated with each other. Because εt is
I(1), (3) and (4) imply that both xt and yt are I(1). The condition that |ρ| < 1 implies that νt and
yt + αxt are I(0). Thus yt and xt cointegrate, and (1, α) is the cointegrating vector.

Using a bit of algebra, we can rewrite (3) and (4) as

∆yt =βδzt−1 + η1t (5)

∆xt =− δzt−1 + η2t (6)

where δ = (1−ρ)/(α−β), zt = yt+αxt, and η1t and η2t are distinct, stationary, linear combinations
of ξt and ζt. This representation is known as the vector error-correction model (VECM). One can
think of zt = 0 as being the point at which yt and xt are in equilibrium. The coefficients on zt−1

describe how yt and xt adjust to zt−1 being nonzero, or out of equilibrium. zt is the “error” in the
system, and (5) and (6) describe how system adjusts or corrects back to the equilibrium. As ρ→ 1,
the system degenerates into a pair of correlated random walks. The VECM parameterization highlights
this point, because δ → 0 as ρ→ 1.
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If we knew α, we would know zt, and we could work with the stationary system of (5) and (6).
Although knowing α seems silly, we can conduct much of the analysis as if we knew α because
there is an estimator for the cointegrating parameter α that converges to its true value at a faster rate
than the estimator for the adjustment parameters β and δ.

The definition of a bivariate cointegrating relation requires simply that there exist a linear combination
of the I(1) variables that is I(0). If yt and xt are I(1) and there are two finite real numbers a 6= 0
and b 6= 0, such that ayt + bxt is I(0), then yt and xt are cointegrated. Although there are two
parameters, a and b, only one will be identifiable because if ayt + bxt is I(0), so is cayt + cbxt
for any finite, nonzero, real number c. Obtaining identification in the bivariate case is relatively
simple. The coefficient on yt in (4) is unity. This natural construction of the model placed the
necessary identification restriction on the cointegrating vector. As we discuss below, identification in
the multivariate case is more involved.

If yt is a K × 1 vector of I(1) variables and there exists a vector β, such that βyt is a vector
of I(0) variables, then yt is said to be cointegrating of order (1, 0) with cointegrating vector β. We
say that the parameters in β are the parameters in the cointegrating equation. For a vector of length
K, there may be at most K − 1 distinct cointegrating vectors. Engle and Granger (1987) provide a
more general definition of cointegration, but this one is sufficient for our purposes.

The multivariate VECM specification

In practice, most empirical applications analyze multivariate systems, so the rest of our discussion
focuses on that case. Consider a VAR with p lags

yt = v + A1yt−1 + A2yt−2 + · · ·+ Apyt−p + εt (7)

where yt is a K × 1 vector of variables, v is a K × 1 vector of parameters, A1–Ap are K ×K
matrices of parameters, and εt is a K × 1 vector of disturbances. εt has mean 0, has covariance
matrix Σ, and is i.i.d. normal over time. Any VAR(p) can be rewritten as a VECM. Using some algebra,
we can rewrite (7) in VECM form as

∆yt = v + Πyt−1 +

p−1∑
i=1

Γi∆yt−i + εt (8)

where Π =
∑j=p
j=1 Aj − Ik and Γi = −

∑j=p
j=i+1 Aj . The v and εt in (7) and (8) are identical.

Engle and Granger (1987) show that if the variables yt are I(1) the matrix Π in (8) has rank
0 ≤ r < K, where r is the number of linearly independent cointegrating vectors. If the variables
cointegrate, 0 < r < K and (8) shows that a VAR in first differences is misspecified because it omits
the lagged level term Πyt−1.

Assume that Π has reduced rank 0 < r < K so that it can be expressed as Π = αβ′, where α
and β are both r ×K matrices of rank r. Without further restrictions, the cointegrating vectors are
not identified: the parameters (α,β) are indistinguishable from the parameters (αQ,βQ−1′) for any
r × r nonsingular matrix Q. Because only the rank of Π is identified, the VECM is said to identify
the rank of the cointegrating space, or equivalently, the number of cointegrating vectors. In practice,
the estimation of the parameters of a VECM requires at least r2 identification restrictions. Stata’s vec
command can apply the conventional Johansen restrictions discussed below or use constraints that
the user supplies.

The VECM in (8) also nests two important special cases. If the variables in yt are I(1) but not
cointegrated, Π is a matrix of zeros and thus has rank 0. If all the variables are I(0), Π has full rank
K.
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There are several different frameworks for estimation and inference in cointegrating systems.
Although the methods in Stata are based on the maximum likelihood (ML) methods developed by
Johansen (1988, 1991, 1995), other useful frameworks have been developed by Park and Phillips (1988,
1989); Sims, Stock, and Watson (1990); Stock (1987); and Stock and Watson (1988); among others.
The ML framework developed by Johansen was independently developed by Ahn and Reinsel (1990).
Maddala and Kim (1998) and Watson (1994) survey all of these methods. The cointegration methods
in Stata are based on Johansen’s maximum likelihood framework because it has been found to be
particularly useful in several comparative studies, including Gonzalo (1994) and Hubrich, Lütkepohl,
and Saikkonen (2001).

Trends in the Johansen VECM framework

Deterministic trends in a cointegrating VECM can stem from two distinct sources; the mean of the
cointegrating relationship and the mean of the differenced series. Allowing for a constant and a linear
trend and assuming that there are r cointegrating relations, we can rewrite the VECM in (8) as

∆yt = αβ′yt−1 +

p−1∑
i=1

Γi∆yt−i + v + δt+ εt (9)

where δ is a K× 1 vector of parameters. Because (9) models the differences of the data, the constant
implies a linear time trend in the levels, and the time trend δt implies a quadratic time trend in the
levels of the data. Often we may want to include a constant or a linear time trend for the differences
without allowing for the higher-order trend that is implied for the levels of the data. VECMs exploit
the properties of the matrix α to achieve this flexibility.

Because α is a K × r rank matrix, we can rewrite the deterministic components in (9) as

v = αµ+ γ (10a)

δt = αρt+ τt (10b)

where µ and ρ are r × 1 vectors of parameters and γ and τ are K × 1 vectors of parameters. γ
is orthogonal to αµ, and τ is orthogonal to αρ; that is, γ′αµ = 0 and τ′αρ = 0, allowing us to
rewrite (9) as

∆yt = α(β′yt−1 + µ+ ρt) +

p−1∑
i=1

Γi∆yt−i + γ+ τ t+ εt (11)

Placing restrictions on the trend terms in (11) yields five cases.

CASE 1: Unrestricted trend

If no restrictions are placed on the trend parameters, (11) implies that there are quadratic trends
in the levels of the variables and that the cointegrating equations are stationary around time
trends (trend stationary).

CASE 2: Restricted trend, τ = 0

By setting τ = 0, we assume that the trends in the levels of the data are linear but not quadratic.
This specification allows the cointegrating equations to be trend stationary.

CASE 3: Unrestricted constant, τ = 0 and ρ = 0

By setting τ = 0 and ρ = 0, we exclude the possibility that the levels of the data have
quadratic trends, and we restrict the cointegrating equations to be stationary around constant
means. Because γ is not restricted to zero, this specification still puts a linear time trend in the
levels of the data.
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CASE 4: Restricted constant, τ = 0, ρ = 0, and γ = 0

By adding the restriction that γ = 0, we assume there are no linear time trends in the levels of
the data. This specification allows the cointegrating equations to be stationary around a constant
mean, but it allows no other trends or constant terms.

CASE 5: No trend, τ = 0, ρ = 0, γ = 0, and µ = 0

This specification assumes that there are no nonzero means or trends. It also assumes that the
cointegrating equations are stationary with means of zero and that the differences and the levels
of the data have means of zero.

This flexibility does come at a price. Below we discuss testing procedures for determining the
number of cointegrating equations. The asymptotic distribution of the LR for hypotheses about r
changes with the trend specification, so we must first specify a trend specification. A combination of
theory and graphical analysis will aid in specifying the trend before proceeding with the analysis.

VECM estimation in Stata

We provide an overview of the vec commands in Stata through an extended example. We have
monthly data on the average selling prices of houses in four cities in Texas: Austin, Dallas, Houston,
and San Antonio. In the dataset, these average housing prices are contained in the variables austin,
dallas, houston, and sa. The series begin in January of 1990 and go through December 2003, for
a total of 168 observations. The following graph depicts our data.
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The plots on the graph indicate that all the series are trending and potential I(1) processes. In a
competitive market, the current and past prices contain all the information available, so tomorrow’s
price will be a random walk from today’s price. Some researchers may opt to use [TS] dfgls to
investigate the presence of a unit root in each series, but the test for cointegration we use includes the
case in which all the variables are stationary, so we defer formal testing until we test for cointegration.
The time trends in the data appear to be approximately linear, so we will specify trend(constant)
when modeling these series, which is the default with vec.

The next graph shows just Dallas’s and Houston’s data, so we can more carefully examine their
relationship.
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Except for the crash at the end of 1991, housing prices in Dallas and Houston appear closely
related. Although average prices in the two cities will differ because of resource variations and other
factors, if the housing markets become too dissimilar, people and businesses will migrate, bringing
the average housing prices back toward each other. We therefore expect the series of average housing
prices in Houston to be cointegrated with the series of average housing prices in Dallas.

Selecting the number of lags

To test for cointegration or fit cointegrating VECMs, we must specify how many lags to include.
Building on the work of Tsay (1984) and Paulsen (1984), Nielsen (2001) has shown that the methods
implemented in varsoc can be used to determine the lag order for a VAR model with I(1) variables.
As can be seen from (9), the order of the corresponding VECM is always one less than the VAR. vec
makes this adjustment automatically, so we will always refer to the order of the underlying VAR. The
output below uses varsoc to determine the lag order of the VAR of the average housing prices in
Dallas and Houston.

. use https://www.stata-press.com/data/r17/txhprice

. varsoc dallas houston

Lag-order selection criteria

Sample: 1990m5 thru 2003m12 Number of obs = 164

Lag LL LR df p FPE AIC HQIC SBIC

0 299.525 .000091 -3.62835 -3.61301 -3.59055
1 577.483 555.92 4 0.000 3.2e-06 -6.9693 -6.92326 -6.85589
2 590.978 26.991* 4 0.000 2.9e-06* -7.0851* -7.00837* -6.89608*
3 593.437 4.918 4 0.296 2.9e-06 -7.06631 -6.95888 -6.80168
4 596.364 5.8532 4 0.210 3.0e-06 -7.05322 -6.9151 -6.71299

* optimal lag
Endogenous: dallas houston
Exogenous: _cons

We will use two lags for this bivariate model because the Hannan–Quinn information criterion (HQIC)
method, Schwarz Bayesian information criterion (SBIC) method, and sequential likelihood-ratio (LR)
test all chose two lags, as indicated by the “*” in the output.
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The reader can verify that when all four cities’ data are used, the LR test selects three lags, the
HQIC method selects two lags, and the SBIC method selects one lag. We will use three lags in our
four-variable model.

Testing for cointegration

The tests for cointegration implemented in vecrank are based on Johansen’s method. If the log
likelihood of the unconstrained model that includes the cointegrating equations is significantly different
from the log likelihood of the constrained model that does not include the cointegrating equations,
we reject the null hypothesis of no cointegration.

Here we use vecrank to determine the number of cointegrating equations:

. vecrank dallas houston

Johansen tests for cointegration
Trend: Constant Number of obs = 166
Sample: 1990m3 thru 2003m12 Number of lags = 2

Critical
Maximum Trace value

rank Params LL Eigenvalue statistic 5%
0 6 576.26444 . 46.8252 15.41
1 9 599.58781 0.24498 0.1785* 3.76
2 10 599.67706 0.00107

* selected rank

Besides presenting information about the sample size and time span, the header indicates that test
statistics are based on a model with two lags and a constant trend. The body of the table presents test
statistics and their critical values of the null hypotheses of no cointegration (line 1) and one or fewer
cointegrating equations (line 2). The eigenvalue shown on the last line is used to compute the trace
statistic in the line above it. Johansen’s testing procedure starts with the test for zero cointegrating
equations (a maximum rank of zero) and then accepts the first null hypothesis that is not rejected.

In the output above, we strongly reject the null hypothesis of no cointegration and fail to reject
the null hypothesis of at most one cointegrating equation. Thus we accept the null hypothesis that
there is one cointegrating equation in the bivariate model.

Using all four series and a model with three lags, we find that there are two cointegrating
relationships.

. vecrank austin dallas houston sa, lag(3)

Johansen tests for cointegration
Trend: Constant Number of obs = 165
Sample: 1990m4 thru 2003m12 Number of lags = 3

Critical
Maximum Trace value

rank Params LL Eigenvalue statistic 5%
0 36 1107.7833 . 101.6070 47.21
1 43 1137.7484 0.30456 41.6768 29.68
2 48 1153.6435 0.17524 9.8865* 15.41
3 51 1158.4191 0.05624 0.3354 3.76
4 52 1158.5868 0.00203

* selected rank
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Fitting a VECM

vec estimates the parameters of cointegrating VECMs. There are four types of parameters of interest:

1. The parameters in the cointegrating equations β

2. The adjustment coefficients α

3. The short-run coefficients

4. Some standard functions of β and α that have useful interpretations

Although all four types are discussed in [TS] vec, here we discuss only types 1–3 and how they
appear in the output of vec.

Having determined that there is a cointegrating equation between the Dallas and Houston series,
we now want to estimate the parameters of a bivariate cointegrating VECM for these two series by
using vec.

. vec dallas houston

Vector error-correction model

Sample: 1990m3 thru 2003m12 Number of obs = 166
AIC = -7.115516

Log likelihood = 599.5878 HQIC = -7.04703
Det(Sigma_ml) = 2.50e-06 SBIC = -6.946794

Equation Parms RMSE R-sq chi2 P>chi2

D_dallas 4 .038546 0.1692 32.98959 0.0000
D_houston 4 .045348 0.3737 96.66399 0.0000

Coefficient Std. err. z P>|z| [95% conf. interval]

D_dallas
_ce1
L1. -.3038799 .0908504 -3.34 0.001 -.4819434 -.1258165

dallas
LD. -.1647304 .0879356 -1.87 0.061 -.337081 .0076202

houston
LD. -.0998368 .0650838 -1.53 0.125 -.2273988 .0277251

_cons .0056128 .0030341 1.85 0.064 -.0003339 .0115595

D_houston
_ce1
L1. .5027143 .1068838 4.70 0.000 .2932258 .7122028

dallas
LD. -.0619653 .1034547 -0.60 0.549 -.2647327 .1408022

houston
LD. -.3328437 .07657 -4.35 0.000 -.4829181 -.1827693

_cons .0033928 .0035695 0.95 0.342 -.0036034 .010389

Cointegrating equations

Equation Parms chi2 P>chi2

_ce1 1 1640.088 0.0000
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Identification: beta is exactly identified

Johansen normalization restriction imposed

beta Coefficient Std. err. z P>|z| [95% conf. interval]

_ce1
dallas 1 . . . . .

houston -.8675936 .0214231 -40.50 0.000 -.9095821 -.825605
_cons -1.688897 . . . . .

The header contains information about the sample, the fit of each equation, and overall model
fit statistics. The first estimation table contains the estimates of the short-run parameters, along with
their standard errors, z statistics, and confidence intervals. The two coefficients on L. ce1 are the
parameters in the adjustment matrix α for this model. The second estimation table contains the
estimated parameters of the cointegrating vector for this model, along with their standard errors, z
statistics, and confidence intervals.

Using our previous notation, we have estimated

α̂ = (−0.304, 0.503) β̂ = (1,−0.868) v̂ = (0.0056, 0.0034)

and

Γ̂ =

(
−0.165 −0.0998
−0.062 −0.333

)
Overall, the output indicates that the model fits well. The coefficient on houston in the cointegrating

equation is statistically significant, as are the adjustment parameters. The adjustment parameters in
this bivariate example are easy to interpret, and we can see that the estimates have the correct
signs and imply rapid adjustment toward equilibrium. When the predictions from the cointegrating
equation are positive, dallas is above its equilibrium value because the coefficient on dallas in
the cointegrating equation is positive. The estimate of the coefficient [D dallas]L. ce1 is −0.3.
Thus when the average housing price in Dallas is too high, it quickly falls back toward the Houston
level. The estimated coefficient [D houston]L. ce1 of 0.5 implies that when the average housing
price in Dallas is too high, the average price in Houston quickly adjusts toward the Dallas level at
the same time that the Dallas prices are adjusting.

Fitting VECMs with Johansen’s normalization

As discussed by Johansen (1995), if there are r cointegrating equations, then at least r2 restrictions
are required to identify the free parameters in β. Johansen proposed a default identification scheme
that has become the conventional method of identifying models in the absence of theoretically justified
restrictions. Johansen’s identification scheme is

β′ = (Ir, β̃
′
)

where Ir is the r × r identity matrix and β̃ is an (K − r)× r matrix of identified parameters. vec
applies Johansen’s normalization by default.

To illustrate, we fit a VECM with two cointegrating equations and three lags on all four series. We
are interested only in the estimates of the parameters in the cointegrating equations, so we can specify
the noetable option to suppress the estimation table for the adjustment and short-run parameters.
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. vec austin dallas houston sa, lags(3) rank(2) noetable

Vector error-correction model

Sample: 1990m4 thru 2003m12 Number of obs = 165
AIC = -13.40174

Log likelihood = 1153.644 HQIC = -13.03496
Det(Sigma_ml) = 9.93e-12 SBIC = -12.49819

Cointegrating equations

Equation Parms chi2 P>chi2

_ce1 2 586.3044 0.0000
_ce2 2 2169.826 0.0000

Identification: beta is exactly identified

Johansen normalization restrictions imposed

beta Coefficient Std. err. z P>|z| [95% conf. interval]

_ce1
austin 1 . . . . .
dallas 0 (omitted)

houston -.2623782 .1893625 -1.39 0.166 -.6335219 .1087655
sa -1.241805 .229643 -5.41 0.000 -1.691897 -.7917128

_cons 5.577099 . . . . .

_ce2
austin 0 (omitted)
dallas 1 . . . . .

houston -1.095652 .0669898 -16.36 0.000 -1.22695 -.9643545
sa .2883986 .0812396 3.55 0.000 .1291718 .4476253

_cons -2.351372 . . . . .

The Johansen identification scheme has placed four constraints on the parameters in β:
[ ce1]austin = 1, [ ce1]dallas = 0, [ ce2]austin = 0, and [ ce2]dallas = 1. We
interpret the results of the first equation as indicating the existence of an equilibrium relationship
between the average housing price in Austin and the average prices of houses in Houston and San
Antonio.

The Johansen normalization restricted the coefficient on dallas to be unity in the second
cointegrating equation, but we could instead constrain the coefficient on houston. Both sets of
restrictions define just-identified models, so fitting the model with the latter set of restrictions will
yield the same maximized log likelihood. To impose the alternative set of constraints, we use the
constraint command.

. constraint define 1 [_ce1]austin = 1

. constraint define 2 [_ce1]dallas = 0

. constraint define 3 [_ce2]austin = 0

. constraint define 4 [_ce2]houston = 1

Yh
高亮

Yh
高亮
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. vec austin dallas houston sa, lags(3) rank(2) noetable bconstraints(1/4)

Iteration 1: log likelihood = 1148.8745
(output omitted )

Iteration 25: log likelihood = 1153.6435

Vector error-correction model

Sample: 1990m4 thru 2003m12 Number of obs = 165
AIC = -13.40174

Log likelihood = 1153.644 HQIC = -13.03496
Det(Sigma_ml) = 9.93e-12 SBIC = -12.49819

Cointegrating equations

Equation Parms chi2 P>chi2

_ce1 2 586.3392 0.0000
_ce2 2 3455.469 0.0000

Identification: beta is exactly identified

( 1) [_ce1]austin = 1
( 2) [_ce1]dallas = 0
( 3) [_ce2]austin = 0
( 4) [_ce2]houston = 1

beta Coefficient Std. err. z P>|z| [95% conf. interval]

_ce1
austin 1 . . . . .
dallas 0 (omitted)

houston -.2623784 .1876727 -1.40 0.162 -.6302102 .1054534
sa -1.241805 .2277537 -5.45 0.000 -1.688194 -.7954157

_cons 5.577099 . . . . .

_ce2
austin 0 (omitted)
dallas -.9126985 .0595804 -15.32 0.000 -1.029474 -.7959231

houston 1 . . . . .
sa -.2632209 .0628791 -4.19 0.000 -.3864617 -.1399802

_cons 2.146094 . . . . .

Only the estimates of the parameters in the second cointegrating equation have changed, and the
new estimates are simply the old estimates divided by −1.095652 because the new constraints are
just an alternative normalization of the same just-identified model. With the new normalization, we
can interpret the estimates of the parameters in the second cointegrating equation as indicating an
equilibrium relationship between the average house price in Houston and the average prices of houses
in Dallas and San Antonio.

Postestimation specification testing

Inference on the parameters in α depends crucially on the stationarity of the cointegrating equations,
so we should check the specification of the model. As a first check, we can predict the cointegrating
equations and graph them over time.

. predict ce1, ce equ(#1)

. predict ce2, ce equ(#2)

Yh
高亮

Yh
高亮
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Although the large shocks apparent in the graph of the levels have clear effects on the predictions
from the cointegrating equations, our only concern is the negative trend in the first cointegrating
equation since the end of 2000. The graph of the levels shows that something put a significant brake
on the growth of housing prices after 2000 and that the growth of housing prices in San Antonio
slowed during 2000 but then recuperated while Austin maintained slower growth. We suspect that
this indicates that the end of the high-tech boom affected Austin more severely than San Antonio.
This difference is what causes the trend in the first cointegrating equation. Although we could try to
account for this effect with a more formal analysis, we will proceed as if the cointegrating equations
are stationary.

We can use vecstable to check whether we have correctly specified the number of cointegrating
equations. As discussed in [TS] vecstable, the companion matrix of a VECM with K endogenous
variables and r cointegrating equations has K−r unit eigenvalues. If the process is stable, the moduli
of the remaining r eigenvalues are strictly less than one. Because there is no general distribution
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theory for the moduli of the eigenvalues, ascertaining whether the moduli are too close to one can
be difficult.

. vecstable, graph

Eigenvalue stability condition

Eigenvalue Modulus

1 1
1 1

-.6698661 .669866
.3740191 + .4475996i .583297
.3740191 - .4475996i .583297
-.386377 + .395972i .553246
-.386377 - .395972i .553246
.540117 .540117

-.0749239 + .5274203i .532715
-.0749239 - .5274203i .532715
-.2023955 .202395
.09923966 .09924

The VECM specification imposes 2 unit moduli.
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The VECM specification imposes 2 unit moduli

Roots of the companion matrix

Because we specified the graph option, vecstable plotted the eigenvalues of the companion
matrix. The graph of the eigenvalues shows that none of the remaining eigenvalues appears close to
the unit circle. The stability check does not indicate that our model is misspecified.

Here we use veclmar to test for serial correlation in the residuals.

. veclmar, mlag(4)

Lagrange-multiplier test

lag chi2 df Prob > chi2

1 56.8757 16 0.00000
2 31.1970 16 0.01270
3 30.6818 16 0.01477
4 14.6493 16 0.55046

H0: no autocorrelation at lag order
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The results clearly indicate serial correlation in the residuals. The results in Gonzalo (1994) indicate
that underspecifying the number of lags in a VECM can significantly increase the finite-sample bias
in the parameter estimates and lead to serial correlation. For this reason, we refit the model with five
lags instead of three.

. vec austin dallas houston sa, lags(5) rank(2) noetable bconstraints(1/4)

Iteration 1: log likelihood = 1200.5402
(output omitted )

Iteration 20: log likelihood = 1203.9465

Vector error-correction model

Sample: 1990m6 thru 2003m12 Number of obs = 163
AIC = -13.79075

Log likelihood = 1203.946 HQIC = -13.1743
Det(Sigma_ml) = 4.51e-12 SBIC = -12.27235

Cointegrating equations

Equation Parms chi2 P>chi2

_ce1 2 498.4682 0.0000
_ce2 2 4125.926 0.0000

Identification: beta is exactly identified

( 1) [_ce1]austin = 1
( 2) [_ce1]dallas = 0
( 3) [_ce2]austin = 0
( 4) [_ce2]houston = 1

beta Coefficient Std. err. z P>|z| [95% conf. interval]

_ce1
austin 1 . . . . .
dallas 0 (omitted)

houston -.6525574 .2047061 -3.19 0.001 -1.053774 -.2513407
sa -.6960166 .2494167 -2.79 0.005 -1.184864 -.2071688

_cons 3.846275 . . . . .

_ce2
austin 0 (omitted)
dallas -.932048 .0564332 -16.52 0.000 -1.042655 -.8214409

houston 1 . . . . .
sa -.2363915 .0599348 -3.94 0.000 -.3538615 -.1189215

_cons 2.065719 . . . . .

Comparing these results with those from the previous model reveals that

1. there is now evidence that the coefficient [ ce1]houston is not equal to zero,

2. the two sets of estimated coefficients for the first cointegrating equation are different, and

3. the two sets of estimated coefficients for the second cointegrating equation are similar.

The assumption that the errors are independent and are identically and normally distributed with
zero mean and finite variance allows us to derive the likelihood function. If the errors do not come
from a normal distribution but are just independent and identically distributed with zero mean and
finite variance, the parameter estimates are still consistent, but they are not efficient.



vec intro — Introduction to vector error-correction models 867

We use vecnorm to test the null hypothesis that the errors are normally distributed.

. quietly vec austin dallas houston sa, lags(5) rank(2) bconstraints(1/4)

. vecnorm

Jarque-Bera test

Equation chi2 df Prob > chi2

D_austin 74.324 2 0.00000
D_dallas 3.501 2 0.17370

D_houston 245.032 2 0.00000
D_sa 8.426 2 0.01481
ALL 331.283 8 0.00000

Skewness test

Equation Skewness chi2 df Prob > chi2

D_austin .60265 9.867 1 0.00168
D_dallas .09996 0.271 1 0.60236

D_houston -1.0444 29.635 1 0.00000
D_sa .38019 3.927 1 0.04752
ALL 43.699 4 0.00000

Kurtosis test

Equation Kurtosis chi2 df Prob > chi2

D_austin 6.0807 64.458 1 0.00000
D_dallas 3.6896 3.229 1 0.07232

D_houston 8.6316 215.397 1 0.00000
D_sa 3.8139 4.499 1 0.03392
ALL 287.583 4 0.00000

The results indicate that we can strongly reject the null hypothesis of normally distributed errors.
Most of the errors are both skewed and kurtotic.

Impulse–response functions for VECMs

With a model that we now consider acceptably well specified, we can use the irf commands to
estimate and interpret the IRFs. Whereas IRFs from a stationary VAR die out over time, IRFs from a
cointegrating VECM do not always die out. Because each variable in a stationary VAR has a time-
invariant mean and finite, time-invariant variance, the effect of a shock to any one of these variables
must die out so that the variable can revert to its mean. In contrast, the I(1) variables modeled in a
cointegrating VECM are not mean reverting, and the unit moduli in the companion matrix imply that
the effects of some shocks will not die out over time.

These two possibilities gave rise to new terms. When the effect of a shock dies out over time, the
shock is said to be transitory. When the effect of a shock does not die out over time, the shock is
said to be permanent.

Below we use irf create to estimate the IRFs and irf graph to graph two of the orthogonalized
IRFs.
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. irf create vec1, set(vecintro, replace) step(24)
(file vecintro.irf created)
(file vecintro.irf now active)
(file vecintro.irf updated)

. irf graph oirf, impulse(austin dallas) response(sa) yline(0)

0

.005

.01

.015

0 10 20 30 0 10 20 30

vec1, austin, sa vec1, dallas, sa

Step
Graphs by irfname, impulse variable, and response variable

The graphs indicate that an orthogonalized shock to the average housing price in Austin has a
permanent effect on the average housing price in San Antonio but that an orthogonalized shock to
the average price of housing in Dallas has a transitory effect. According to this model, unexpected
shocks that are local to the Austin housing market will have a permanent effect on the housing market
in San Antonio, but unexpected shocks that are local to the Dallas housing market will have only a
transitory effect on the housing market in San Antonio.

Forecasting with VECMs

Cointegrating VECMs are also used to produce forecasts of both the first-differenced variables and
the levels of the variables. Comparing the variances of the forecast errors of stationary VARs with
those from a cointegrating VECM reveals a fundamental difference between the two models. Whereas
the variances of the forecast errors for a stationary VAR converge to a constant as the prediction
horizon grows, the variances of the forecast errors for the levels of a cointegrating VECM diverge
with the forecast horizon. (See sec. 6.5 of Lütkepohl [2005] for more about this result.) Because all
the variables in the model for the first differences are stationary, the forecast errors for the dynamic
forecasts of the first differences remain finite. In contrast, the forecast errors for the dynamic forecasts
of the levels diverge to infinity.

We use fcast compute to obtain dynamic forecasts of the levels and fcast graph to graph
these dynamic forecasts, along with their asymptotic confidence intervals.
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. tsset

Time variable: t, 1990m1 to 2003m12
Delta: 1 month

. fcast compute m1_, step(24)

. fcast graph m1_austin m1_dallas m1_houston m1_sa
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As expected, the widths of the confidence intervals grow with the forecast horizon.
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Description

vec fits a type of vector autoregression in which some of the variables are cointegrated by using
Johansen’s (1995) maximum likelihood method. Constraints may be placed on the parameters in the
cointegrating equations or on the adjustment terms. See [TS] vec intro for a list of commands that
are used in conjunction with vec.

Quick start
Vector error-correction model for y1, y2, and y3 using tsset data

vec y1 y2 y3

Use 4 lags for the underlying VAR model
vec y1 y2 y3, lags(4)

Use 2 cointegrating equations
vec y1 y2 y3, lags(4) rank(2)

Add a linear trend in the cointegrating equations and a quadratic trend in the undifferenced data
vec y1 y2 y3, lags(4) rank(2) trend(trend)

As above, but without a trend or a constant
vec y1 y2 y3, lags(4) rank(2) trend(none)

Menu
Statistics > Multivariate time series > Vector error-correction model (VECM)

871
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Syntax
vec depvarlist

[
if
] [

in
] [

, options
]

options Description

Model

rank(#) use # cointegrating equations; default is rank(1)

lags(#) use # for the maximum lag in underlying VAR model
trend(constant) include an unrestricted constant in model; the default
trend(rconstant) include a restricted constant in model
trend(trend) include a linear trend in the cointegrating equations and a

quadratic trend in the undifferenced data
trend(rtrend) include a restricted trend in model
trend(none) do not include a trend or a constant
bconstraints(constraintsbc) place constraintsbc on cointegrating vectors
aconstraints(constraintsac) place constraintsac on adjustment parameters

Adv. model

sindicators(varlistsi) include normalized seasonal indicator variables varlistsi
noreduce do not perform checks and corrections for collinearity among

lags of dependent variables

Reporting

level(#) set confidence level; default is level(95)

nobtable do not report parameters in the cointegrating equations
noidtest do not report the likelihood-ratio test of overidentifying

restrictions
alpha report adjustment parameters in separate table
pi report parameters in Π = αβ′

noptable do not report elements of Π matrix
mai report parameters in the moving-average impact matrix
noetable do not report adjustment and short-run parameters
dforce force reporting of short-run, beta, and alpha parameters when

the parameters in beta are not identified; advanced option
nocnsreport do not display constraints
display options control columns and column formats, row spacing, and line width

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics

vec does not allow gaps in the data.
You must tsset your data before using vec; see [TS] tsset.
varlist must contain at least two variables and may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by, collect, fp, rolling, statsby, and xi are allowed; see [U] 11.1.10 Prefix commands.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Options

� � �
Model �

rank(#) specifies the number of cointegrating equations; rank(1) is the default.

lags(#) specifies the maximum lag to be included in the underlying VAR model. The maximum lag
in a VECM is one smaller than the maximum lag in the corresponding VAR in levels; the number
of lags must be greater than zero but small enough so that the degrees of freedom used up by the
model are fewer than the number of observations. The default is lags(2).

trend(trend spec) specifies which of Johansen’s five trend specifications to include in the model.
These specifications are discussed in Specification of constants and trends below. The default is
trend(constant).

bconstraints(constraintsbc) specifies the constraints to be placed on the parameters of the coin-
tegrating equations. When no constraints are placed on the adjustment parameters—that is, when
the aconstraints() option is not specified—the default is to place the constraints defined by
Johansen’s normalization on the parameters of the cointegrating equations. When constraints are
placed on the adjustment parameters, the default is not to place constraints on the parameters in
the cointegrating equations.

aconstraints(constraintsac) specifies the constraints to be placed on the adjustment parameters.
By default, no constraints are placed on the adjustment parameters.

� � �
Adv. model �

sindicators(varlistsi) specifies the normalized seasonal indicator variables to include in the model.
The indicator variables specified in this option must be normalized as discussed in Johansen (1995).
If the indicators are not properly normalized, the estimator of the cointegrating vector does not
converge to the asymptotic distribution derived by Johansen (1995). More details about how these
variables are handled are provided in Methods and formulas. sindicators() cannot be specified
with trend(none) or with trend(rconstant).

noreduce causes vec to skip the checks and corrections for collinearity among the lags of the
dependent variables. By default, vec checks to see whether the current lag specification causes
some of the regressions performed by vec to contain perfectly collinear variables; if so, it reduces
the maximum lag until the perfect collinearity is removed.

� � �
Reporting �

level(#); see [R] Estimation options.

nobtable suppresses the estimation table for the parameters in the cointegrating equations. By default,
vec displays the estimation table for the parameters in the cointegrating equations.

noidtest suppresses the likelihood-ratio test of the overidentifying restrictions, which is reported
by default when the model is overidentified.

alpha displays a separate estimation table for the adjustment parameters, which is not displayed by
default.

pi displays a separate estimation table for the parameters in Π = αβ′, which is not displayed by
default.

noptable suppresses the estimation table for the elements of the Π matrix, which is displayed by
default when the parameters in the cointegrating equations are not identified.

mai displays a separate estimation table for the parameters in the moving-average impact matrix,
which is not displayed by default.
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noetable suppresses the main estimation table that contains information about the estimated adjustment
parameters and the short-run parameters, which is displayed by default.

dforce displays the estimation tables for the short-run parameters and α and β—if the last two are
requested—when the parameters in β are not identified. By default, when the specified constraints
do not identify the parameters in the cointegrating equations, estimation tables are displayed only
for Π and the MAI.

nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, vsquish, cformat(% fmt), pformat(% fmt), sformat(% fmt),
and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: iterate(#),
[
no
]
log, trace, toltrace, tolerance(#), ltolerance(#),

afrom(matrixa), and bfrom(matrixb); see [R] Maximize.

toltrace displays the relative differences for the log likelihood and the coefficient vector at every
iteration. This option cannot be specified if no constraints are defined or if nolog is specified.

afrom(matrixa) specifies a 1×(K∗r) row vector with starting values for the adjustment parameters,
where K is the number of endogenous variables and r is the number of cointegrating equations
specified in the rank() option. The starting values should be ordered as they are reported in
e(alpha). This option cannot be specified if no constraints are defined.

bfrom(matrixb) specifies a 1× (m1 ∗ r) row vector with starting values for the parameters of the
cointegrating equations, where m1 is the number of variables in the trend-augmented system and
r is the number of cointegrating equations specified in the rank() option. (See Methods and
formulas for more details about m1.) The starting values should be ordered as they are reported
in e(betavec). As discussed in Methods and formulas , for some trend specifications, e(beta)
contains parameter estimates that are not obtained directly from the optimization algorithm.
bfrom() should specify only starting values for the parameters reported in e(betavec). This
option cannot be specified if no constraints are defined.

The following option is available with vec but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Specification of constants and trends
Collinearity

Introduction

VECMs are used to model the stationary relationships between multiple time series that contain
unit roots. vec implements Johansen’s approach for estimating the parameters of a VECM.

[TS] vec intro reviews the basics of integration and cointegration and highlights why we need
special methods for modeling the relationships between processes that contain unit roots. This manual
entry assumes familiarity with the material in [TS] vec intro and provides examples illustrating how to
use the vec command. See Johansen (1995), Hamilton (1994), and Becketti (2020) for more in-depth
introductions to cointegration analysis.
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Example 1

This example uses annual data on the average per-capita disposable personal income in the eight
U.S. Bureau of Economic Analysis (BEA) regions of the United States. We use data from 1948–2002
in logarithms. Unit-root tests on these series fail to reject the null hypothesis that per-capita disposable
income in each region contains a unit root. Because capital and labor can move easily between the
different regions of the United States, we would expect that no one series will diverge from all the
remaining series and that cointegrating relationships exist.

Below we graph the natural logs of average disposal income in the New England and the Southeast
regions.

. use https://www.stata-press.com/data/r17/rdinc

. line ln_ne ln_se year
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The graph indicates a differential between the two series that shrinks between 1960 and about
1980 and then grows until it stabilizes around 1990. We next estimate the parameters of a bivariate
VECM with one cointegrating relationship.
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. vec ln_ne ln_se

Vector error-correction model

Sample: 1950 thru 2002 Number of obs = 53
AIC = -11.00462

Log likelihood = 300.6224 HQIC = -10.87595
Det(Sigma_ml) = 4.06e-08 SBIC = -10.67004

Equation Parms RMSE R-sq chi2 P>chi2

D_ln_ne 4 .017896 0.9313 664.4668 0.0000
D_ln_se 4 .018723 0.9292 642.7179 0.0000

Coefficient Std. err. z P>|z| [95% conf. interval]

D_ln_ne
_ce1
L1. -.4337524 .0721365 -6.01 0.000 -.5751373 -.2923675

ln_ne
LD. .7168658 .1889085 3.79 0.000 .3466119 1.08712

ln_se
LD. -.6748754 .2117975 -3.19 0.001 -1.089991 -.2597599

_cons -.0019846 .0080291 -0.25 0.805 -.0177214 .0137521

D_ln_se
_ce1
L1. -.3543935 .0754725 -4.70 0.000 -.5023168 -.2064701

ln_ne
LD. .3366786 .1976448 1.70 0.088 -.050698 .7240553

ln_se
LD. -.1605811 .2215922 -0.72 0.469 -.5948939 .2737317

_cons .002429 .0084004 0.29 0.772 -.0140355 .0188936

Cointegrating equations

Equation Parms chi2 P>chi2

_ce1 1 29805.02 0.0000

Identification: beta is exactly identified

Johansen normalization restriction imposed

beta Coefficient Std. err. z P>|z| [95% conf. interval]

_ce1
ln_ne 1 . . . . .
ln_se -.9433708 .0054643 -172.64 0.000 -.9540807 -.9326609
_cons -.8964065 . . . . .

The default output has three parts. The header provides information about the sample, the model
fit, and the identification of the parameters in the cointegrating equation. The main estimation table
contains the estimates of the short-run parameters, along with their standard errors and confidence
intervals. The second estimation table reports the estimates of the parameters in the cointegrating
equation, along with their standard errors and confidence intervals.
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The results indicate strong support for a cointegrating equation such that

ln ne− 0.943 ln se− 0.896

should be a stationary series. Identification of the parameters in the cointegrating equation is achieved
by constraining some of them to be fixed, and fixed parameters do not have standard errors. In this
example, the coefficient on ln ne has been normalized to 1, so its standard error is missing. As
discussed in Methods and formulas, the constant term in the cointegrating equation is not directly
estimated in this trend specification but rather is backed out from other estimates. Not all the elements
of the VCE that correspond to this parameter are readily available, so the standard error for the cons
parameter is missing.

To get a better idea of how our model fits, we predict the cointegrating equation and graph it over
time:

. predict ce, ce

. line ce year
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Although the predicted cointegrating equation has the right appearance for the time before the
mid-1960s, afterward the predicted cointegrating equation does not look like a stationary series. A
better model would account for the trends in the size of the differential.

As discussed in [TS] vec intro, simply normalizing one of the coefficients to be one is sufficient to
identify the parameters of the single cointegrating vector. When there is more than one cointegrating
equation, more restrictions are required.



878 vec — Vector error-correction models

Example 2

We have data on monthly unemployment rates in Indiana, Illinois, Kentucky, and Missouri from
January 1978 through December 2003. We suspect that factor mobility will keep the unemployment
rates in equilibrium. The following graph plots the data.

. use https://www.stata-press.com/data/r17/urates, clear

. line missouri indiana kentucky illinois t
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The graph shows that although the series do appear to move together, the relationship is not as clear
as in the previous example. There are periods when Indiana has the highest rate and others when
Indiana has the lowest rate. Although the Kentucky rate moves closely with the other series for most
of the sample, there is a period in the mid-1980s when the unemployment rate in Kentucky does not
fall at the same rate as the other series.

We will model the series with two cointegrating equations and no linear or quadratic time trends
in the original series. Because we are focusing on the cointegrating vectors, we use the noetable
option to suppress displaying the short-run estimation table.
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. vec missouri indiana kentucky illinois, trend(rconstant) rank(2) lags(4)
> noetable

Vector error-correction model

Sample: 1978m5 thru 2003m12 Number of obs = 308
AIC = -2.306048

Log likelihood = 417.1314 HQIC = -2.005818
Det(Sigma_ml) = 7.83e-07 SBIC = -1.555184

Cointegrating equations

Equation Parms chi2 P>chi2

_ce1 2 133.3885 0.0000
_ce2 2 195.6324 0.0000

Identification: beta is exactly identified

Johansen normalization restrictions imposed

beta Coefficient Std. err. z P>|z| [95% conf. interval]

_ce1
missouri 1 . . . . .
indiana 0 (omitted)

kentucky .3493902 .2005537 1.74 0.081 -.0436879 .7424683
illinois -1.135152 .2069063 -5.49 0.000 -1.540681 -.7296235

_cons -.3880707 .4974323 -0.78 0.435 -1.36302 .5868787

_ce2
missouri -1.11e-16 . . . . .
indiana 1 . . . . .

kentucky .2059473 .2718678 0.76 0.449 -.3269038 .7387985
illinois -1.51962 .2804792 -5.42 0.000 -2.069349 -.9698907

_cons 2.92857 .6743122 4.34 0.000 1.606942 4.250197

Except for the coefficients on kentucky in the two cointegrating equations and the constant
term in the first, all the parameters are significant at the 5% level. We can refit the model with the
Johansen normalization and the overidentifying constraint that the coefficient on kentucky in the
second cointegrating equation is zero.

. constraint define 1 [_ce1]missouri = 1

. constraint define 2 [_ce1]indiana = 0

. constraint define 3 [_ce2]missouri = 0

. constraint define 4 [_ce2]indiana = 1

. constraint define 5 [_ce2]kentucky = 0
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. vec missouri indiana kentucky illinois, trend(rconstant) rank(2)
> lags(4) noetable bconstraints(1/5)

Iteration 1: log likelihood = 416.97177
(output omitted )

Iteration 20: log likelihood = 416.9744

Vector error-correction model

Sample: 1978m5 thru 2003m12 Number of obs = 308
AIC = -2.311522

Log likelihood = 416.9744 HQIC = -2.016134
Det(Sigma_ml) = 7.84e-07 SBIC = -1.572769

Cointegrating equations

Equation Parms chi2 P>chi2

_ce1 2 145.233 0.0000
_ce2 1 209.9344 0.0000

Identification: beta is overidentified

( 1) [_ce1]missouri = 1
( 2) [_ce1]indiana = 0
( 3) [_ce2]missouri = 0
( 4) [_ce2]indiana = 1
( 5) [_ce2]kentucky = 0

beta Coefficient Std. err. z P>|z| [95% conf. interval]

_ce1
missouri 1 . . . . .
indiana 0 (omitted)

kentucky .2521685 .1649653 1.53 0.126 -.0711576 .5754946
illinois -1.037453 .1734165 -5.98 0.000 -1.377343 -.6975626

_cons -.3891102 .4726968 -0.82 0.410 -1.315579 .5373586

_ce2
missouri 0 (omitted)
indiana 1 . . . . .

kentucky 0 (omitted)
illinois -1.314265 .0907071 -14.49 0.000 -1.492048 -1.136483

_cons 2.937016 .6448924 4.55 0.000 1.67305 4.200982

LR test of identifying restrictions: chi2(1) = .3139 Prob > chi2 = 0.575

The test of the overidentifying restriction does not reject the null hypothesis that the restriction
is valid, and the p-value on the coefficient on kentucky in the first cointegrating equation indicates
that it is not significant. We will leave the variable in the model and attribute the lack of significance
to whatever caused the kentucky series to temporarily rise above the others from 1985 until 1990,
though we could instead consider removing kentucky from the model.

Next, we look at the estimates of the adjustment parameters. In the output below, we replay
the previous results. We specify the alpha option so that vec will display an estimation table for
the estimates of the adjustment parameters, and we specify nobtable to suppress the table for the
parameters of the cointegrating equations because we have already looked at those.
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. vec, alpha nobtable noetable
Vector error-correction model

Sample: 1978m5 thru 2003m12 Number of obs = 308
AIC = -2.311522

Log likelihood = 416.9744 HQIC = -2.016134
Det(Sigma_ml) = 7.84e-07 SBIC = -1.572769

Adjustment parameters

Equation Parms chi2 P>chi2

D_missouri 2 19.39607 0.0001
D_indiana 2 6.426086 0.0402
D_kentucky 2 8.524901 0.0141
D_illinois 2 22.32893 0.0000

alpha Coefficient Std. err. z P>|z| [95% conf. interval]

D_missouri
_ce1
L1. -.0683152 .0185763 -3.68 0.000 -.1047242 -.0319063

_ce2
L1. .0405613 .0112417 3.61 0.000 .018528 .0625946

D_indiana
_ce1
L1. -.0342096 .0220955 -1.55 0.122 -.0775159 .0090967

_ce2
L1. .0325804 .0133713 2.44 0.015 .0063732 .0587877

D_kentucky
_ce1
L1. -.0482012 .0231633 -2.08 0.037 -.0936004 -.0028021

_ce2
L1. .0374395 .0140175 2.67 0.008 .0099657 .0649133

D_illinois
_ce1
L1. .0138224 .0227041 0.61 0.543 -.0306768 .0583215

_ce2
L1. .0567664 .0137396 4.13 0.000 .0298373 .0836955

LR test of identifying restrictions: chi2(1) = .3139 Prob > chi2 = 0.575

All the coefficients are significant at the 5% level, except those on Indiana and Illinois in the first
cointegrating equation. From an economic perspective, the issue is whether the unemployment rates
in Indiana and Illinois adjust when the first cointegrating equation is out of equilibrium. We could
impose restrictions on one or both of those parameters and refit the model, or we could just decide
to use the current results.
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Technical note
vec can be used to fit models in which the parameters in β are not identified, in which case only

the parameters in Π and the moving-average impact matrix C are identified. When the parameters in
β are not identified, the values of β̂ and α̂ can vary depending on the starting values. However, the
estimates of Π and C are identified and have known asymptotic distributions. This method is valid
because these additional normalization restrictions impose no restriction on Π or C.

Specification of constants and trends

As discussed in [TS] vec intro, allowing for a constant term and linear time trend allow us to
write the VECM as

∆yt = α(βyt−1 + µ+ ρt) +

p−1∑
i=1

Γi∆yt−i + γ+ τ t+ εt

Five different trend specifications are available:

Option in trend() Parameter restrictions Johansen (1995) notation

trend none H(r)
rtrend τ = 0 H∗(r)
constant ρ = 0, and τ = 0 H1(r)
rconstant ρ = 0, γ = 0 and τ = 0 H∗1 (r)
none µ = 0, ρ = 0, γ = 0, and τ = 0 H2(r)

trend(trend) allows for a linear trend in the cointegrating equations and a quadratic trend in
the undifferenced data. A linear trend in the cointegrating equations implies that the cointegrating
equations are assumed to be trend stationary.

trend(rtrend) defines a restricted trend model that excludes linear trends in the differenced data
but allows for linear trends in the cointegrating equations. As in the previous case, a linear trend in
a cointegrating equation implies that the cointegrating equation is trend stationary.

trend(constant) defines a model with an unrestricted constant. This allows for a linear trend
in the undifferenced data and cointegrating equations that are stationary around a nonzero mean. This
is the default.

trend(rconstant) defines a model with a restricted constant in which there is no linear or
quadratic trend in the undifferenced data. A nonzero µ allows for the cointegrating equations to be
stationary around nonzero means, which provide the only intercepts for differenced data. Seasonal
indicators are not allowed with this specification.

trend(none) defines a model that does not include a trend or a constant. When there is no trend
or constant, the cointegrating equations are restricted to being stationary with zero means. Also, after
adjusting for the effects of lagged endogenous variables, the differenced data are modeled as having
mean zero. Seasonal indicators are not allowed with this specification.
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Technical note

vec uses a switching algorithm developed by Boswijk (1995) to maximize the log-likelihood
function when constraints are placed on the parameters. The starting values affect both the ability of
the algorithm to find a maximum and its speed in finding that maximum. By default, vec uses the
parameter estimates that correspond to Johansen’s normalization. Sometimes, other starting values
will cause the algorithm to find a maximum faster.

To specify starting values for the parameters in α, we specify a 1× (K ∗r) matrix in the afrom()
option. Specifying starting values for the parameters in β is slightly more complicated. As explained
in Methods and formulas, specifying trend(constant), trend(rtrend), or trend(trend) causes
some of the estimates of the trend parameters appearing in β̂ to be “backed out”. The switching
algorithm estimates only the parameters of the cointegrating equations whose estimates are stored in
e(betavec). For this reason, only the parameters stored in e(betavec) can have their initial values
set via bfrom().

The table below describes which trend parameters in the cointegrating equations are estimated by
the switching algorithm for each of the five specifications.

Trend specification Trend parameters in Trend parameter estimated
cointegrating equations via switching algorithm

none none none
rconstant cons cons
constant cons none
rtrend cons, trend trend
trend cons, trend none

Collinearity

As expected, collinearity among variables causes some parameters to be unidentified numerically.
If vec encounters perfect collinearity among the dependent variables, it exits with an error.

In contrast, if vec encounters perfect collinearity that appears to be due to too many lags in the
model, vec displays a warning message and reduces the maximum lag included in the model in an
effort to find a model with fewer lags in which all the parameters are identified by the data. Specifying
the noreduce option causes vec to skip over these additional checks and corrections for collinearity.
Thus the noreduce option can be used to force the estimation to proceed when not all the parameters
are identified by the data. When some parameters are not identified because of collinearity, the results
cannot be interpreted but can be used to find the source of the collinearity.
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Stored results
vec stores the following in e():

Scalars
e(N) number of observations
e(k rank) number of unconstrained parameters
e(k eq) number of equations in e(b)
e(k dv) number of dependent variables
e(k ce) number of cointegrating equations
e(n lags) number of lags
e(df m) model degrees of freedom
e(ll) log likelihood
e(chi2 res) value of test of overidentifying restrictions
e(df lr) degrees of freedom of the test of overidentifying restrictions
e(beta iden) 1 if the parameters in β are identified and 0 otherwise
e(beta icnt) number of independent restrictions placed on β
e(k #) number of variables in equation #
e(df m#) model degrees of freedom in equation #
e(r2 #) R2 of equation #
e(chi2 #) χ2 statistic for equation #
e(rmse #) RMSE of equation #
e(aic) value of AIC
e(hqic) value of HQIC
e(sbic) value of SBIC
e(tmin) minimum time
e(tmax) maximum time
e(detsig ml) determinant of the estimated covariance matrix
e(rank) rank of e(V)
e(converge) 1 if the switching algorithm converged, 0 if it did not converge

Macros
e(cmd) vec
e(cmdline) command as typed
e(trend) trend specified
e(tsfmt) format of the time variable
e(tvar) variable denoting time within groups
e(endog) endogenous variables
e(covariates) list of covariates
e(eqnames) equation names
e(cenames) names of cointegrating equations
e(reduce opt) noreduce, if noreduce is specified
e(reduce lags) list of maximum lags to which the model has been reduced
e(title) title in estimation output
e(aconstraints) constraints placed on α
e(bconstraints) constraints placed on β
e(sindicators) seasonal indicator variables
e(properties) b V
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(marginsdefault) default predict() specification for margins

Matrices
e(b) estimates of short-run parameters
e(V) VCE of short-run parameter estimates
e(beta) estimates of β

e(V beta) VCE of β̂
e(betavec) directly obtained estimates of β

e(pi) estimates of Π̂

e(V pi) VCE of Π̂
e(alpha) estimates of α
e(V alpha) VCE of α̂



vec — Vector error-correction models 885

e(omega) estimates of Ω̂
e(mai) estimates of C
e(V mai) VCE of Ĉ

Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

Methods and formulas
Methods and formulas are presented under the following headings:

General specification of the VECM
The log-likelihood function

Unrestricted trend
Restricted trend
Unrestricted constant
Restricted constant
No trend

Estimation with Johansen identification
Estimation with constraints: β identified
Estimation with constraints: β not identified
Formulas for the information criteria
Formulas for predict

General specification of the VECM

vec estimates the parameters of a VECM that can be written as

∆yt = αβ′yt−1 +

p−1∑
i=1

Γi∆yt−i + v + δt+ w1s1 + · · ·+ wmsm + εt (1)

where

yt is a K × 1 vector of endogenous variables,

α is a K × r matrix of parameters,

β is a K × r matrix of parameters,

Γ1, . . . ,Γp−1 are K ×K matrices of parameters,

v is a K × 1 vector of parameters,

δ is a K × 1 vector of trend coefficients,

t is a linear time trend,

s1, . . . , sm are orthogonalized seasonal indicators specified in the sindicators() option, and

w1, . . . ,wm are K × 1 vectors of coefficients on the orthogonalized seasonal indicators.
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There are two types of deterministic elements in (1): the trend, v + δt, and the orthogonalized
seasonal terms, w1s1 + · · · + wmsm. Johansen (1995, chap. 11) shows that inference about the
number of cointegrating equations is based on nonstandard distributions and that the addition of any
term that generalizes the deterministic specification in (1) changes the asymptotic distributions of the
statistics used for inference on the number of cointegrating equations and the asymptotic distribution
of the ML estimator of the cointegrating equations. In fact, Johansen (1995, 84) notes that including
event indicators causes the statistics used for inference on the number of cointegrating equations to
have asymptotic distributions that must be computed case by case. For this reason, event indicators
may not be specified in the present version of vec.

If seasonal indicators are included in the model, they cannot be collinear with a constant term. If
they are collinear with a constant term, one of the indicator variables is omitted.

As discussed in Specification of constants and trends, we can reparameterize the model as

∆yt = α(βyt−1 + µ+ ρt) +

p−1∑
i=1

Γi∆yt−i + γ+ τ t+ εt (2)

The log-likelihood function

We can maximize the log-likelihood function much more easily by writing it in concentrated
form. In fact, as discussed below, in the simple case with the Johansen normalization on β and no
constraints on α, concentrating the log-likelihood function produces an analytical solution for the
parameter estimates.

To concentrate the log likelihood, rewrite (2) as

Z0t = αβ̃
′
Z1t + ΨZ2t + εt (3)

where Z0t is a K × 1 vector of variables ∆yt, α is the K × r matrix of adjustment coefficients,
and εt is a K × 1 vector of independent and identically distributed normal vectors with mean 0 and
contemporaneous covariance matrix Ω. Z1t, Z2t, β̃, and Ψ depend on the trend specification and are
defined below.

The log-likelihood function for the model in (3) is

L = −1

2

{
TK ln(2π) + T ln(|Ω|)

+

T∑
t=1

(Z0t − αβ̃
′
Z1t −ΨZ2t)

′Ω−1(Z0t − αβ̃
′
Z1t −ΨZ2t)

}
(4)

with the constraints that α and β̃ have rank r.

Johansen (1995, chap. 6), building on Anderson (1951), shows how the Ψ parameters can be
expressed as analytic functions of α, β̃, and the data, yielding the concentrated log-likelihood function

Lc = −1

2

{
TK ln(2π) + T ln(|Ω|)

+

T∑
t=1

(R0t − αβ̃
′
R1t)

′Ω−1(R0t − αβ̃
′
R1t)

}
(5)
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where

Mij = T−1
∑T
t=1 ZitZ

′
jt, i, j ∈ {0, 1, 2};

R0t = Z0t −M02M
−1
22 Z2t; and

R1t = Z1t −M12M
−1
22 Z2t.

The definitions of Z1t, Z2t, β̃, and Ψ change with the trend specifications, although some of their
components stay the same.

Unrestricted trend

When the trend in the VECM is unrestricted, we can define the variables in (3) directly in terms
of the variables in (1):

Z1t = yt−1 is K × 1

Z2t = (∆y′t−1, . . . ,∆y′t−p+1, 1, t, s1, . . . , sm)′ is {K(p− 1) + 2 +m} × 1;

Ψ = (Γ1, . . . ,Γp−1,v, δ,w1, . . . ,wm) is K × {K(p− 1) + 2 +m}

β̃ = β is the K × r matrix composed of the r cointegrating vectors.

In the unrestricted trend specification, m1 = K, m2 = K(p − 1) + 2 + m, and there are
nparms = Kr +Kr +K{K(p− 1) + 2 +m} parameters in (3).

Restricted trend

When there is a restricted trend in the VECM in (2), τ = 0, but the intercept v = αµ + γ is
unrestricted. The VECM with the restricted trend can be written as

∆yt = α(β′,ρ)

(
yt−1

t

)
+

p−1∑
i=1

Γi∆yt−i + v + w1s1 + · · ·+ wmsm + εt

This equation can be written in the form of (3) by defining

Z1t =
(
y′t−1, t

)′
is (K + 1)× 1

Z2t = (∆y′t−1, . . . ,∆y′t−p+1, 1, s1, . . . , sm)′ is {K(p− 1) + 1 +m} × 1

Ψ = (Γ1, . . . ,Γp−1,v,w1, . . . ,wm) is K × {K(p− 1) + 1 +m}

β̃ =
(
β′,ρ

)′
is the (K + 1) × r matrix composed of the r cointegrating vectors and the r

trend coefficients ρ

In the restricted trend specification, m1 = K + 1, m2 = {K(p − 1) + 1 + m}, and there are
nparms = Kr + (K + 1)r +K{K(p− 1) + 1 +m} parameters in (3).

Unrestricted constant

An unrestricted constant in the VECM in (2) is equivalent to setting δ = 0 in (1), which can be
written in the form of (3) by defining

Z1t = yt−1 is (K × 1)

Z2t = (∆y′t−1, . . . ,∆y′t−p+1, 1, s1, . . . , sm)′ is {K(p− 1) + 1 +m} × 1;

Ψ = (Γ1, . . . ,Γp−1,v,w1, . . . ,wm) is K × {K(p− 1) + 1 +m}

β̃ = β is the K × r matrix composed of the r cointegrating vectors
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In the unrestricted constant specification, m1 = K, m2 = {K(p − 1) + 1 + m}, and there are
nparms = Kr +Kr +K{K(p− 1) + 1 +m} parameters in (3).

Restricted constant

When there is a restricted constant in the VECM in (2), it can be written in the form of (3) by
defining

Z1t =
(
y′t−1, 1

)′
is (K + 1)× 1

Z2t = (∆y′t−1, . . . ,∆y′t−p+1)′ is K(p− 1)× 1

Ψ = (Γ1, . . . ,Γp−1) is K ×K(p− 1)

β̃ =
(
β′,µ

)′
is the (K + 1) × r matrix composed of the r cointegrating vectors and the r

constants in the cointegrating relations.

In the restricted trend specification, m1 = K + 1, m2 = K(p − 1), and there are nparms =
Kr + (K + 1)r +K{K(p− 1)} parameters in (3).

No trend

When there is no trend in the VECM in (2), it can be written in the form of (3) by defining

Z1t = yt−1 is K × 1

Z2t = (∆y′t−1, . . . ,∆y′t−p+1)′ is K(p− 1) +m× 1

Ψ = (Γ1, . . . ,Γp−1) is K ×K(p− 1)

β̃ = β is K × r matrix of r cointegrating vectors

In the no-trend specification, m1 = K, m2 = K(p − 1), and there are nparms = Kr + Kr +
K{K(p− 1)} parameters in (3).

Estimation with Johansen identification

Not all the parameters in α and β̃ are identified. Consider the simple case in which β̃ is K × r
and let Q be a nonsingular r × r matrix. Then

αβ̃
′

= αQQ−1β̃
′

= αQ(β̃Q
′−1)′ = α̇β̇

′

Substituting α̇β̇
′

into the log likelihood in (5) for αβ̃
′

would not change the value of the log
likelihood, so some a priori identification restrictions must be found to identify α and β̃. As discussed
in Johansen (1995, chap. 5 and 6) and Boswijk (1995), if the restrictions exactly identify or overidentify
β̃, the estimates of the unconstrained parameters in β̃will be superconsistent, meaning that the estimates
of the free parameters in β̃ will converge at a faster rate than estimates of the short-run parameters
in α and Γi. This allows the distribution of the estimator of the short-run parameters to be derived
conditional on the estimated β̃.

Johansen (1995, chap. 6) has proposed a normalization method for use when theory does not
provide sufficient a priori restrictions to identify the cointegrating vector. This method has become
widely adopted by researchers. Johansen’s identification scheme is

β̃
′

= (Ir, β̆
′
) (6)

where Ir is the r × r identity matrix and β̆ is a (m1 − r)× r matrix of identified parameters.
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Johansen’s identification method places r2 linearly independent constraints on the parameters in
β̃, thereby defining an exactly identified model. The total number of freely estimated parameters is
nparms − r2 = {K + m2 + (K + m1 − r)r}, and the degrees of freedom d is calculated as the
integer part of (nparms − r2)/K.

When only the rank and the Johansen identification restrictions are placed on the model, we can
further manipulate the log likelihood in (5) to obtain analytic formulas for the parameters in β̃, α,
and Ω. For a given value of β̃, α and Ω can be found by regressing R0t on β̃

′
R1t. This allows a

further simplification of the problem in which

α(β̃) = S01β̃(β̃
′
S11β̃)−1

Ω(β̃) = S00 − S01β̃(β̃
′
S11β̃)−1β̃

′
S10

Sij = (1/T )
∑T
t=1RitR

′
jt i, j ∈ {0, 1}

Johansen (1995) shows that by inserting these solutions into equation (5), β̂ is given by the r
eigenvectors v1, . . . ,vr corresponding to the r largest eigenvalues λ1, . . . , λr that solve the generalized
eigenvalue problem

|λiS11 − S10S
−1
00 S01| = 0 (7)

The eigenvectors corresponding to λ1, . . . , λr that solve (7) are the unidentified parameter estimates.
To impose the identification restrictions in (6), we normalize the eigenvectors such that

λiS11vi = S01S
−1
00 S01vi (8)

and
v′iS11vj =

{
1 if i = j
0 otherwise

(9)

At the optimum the log-likelihood function with the Johansen identification restrictions can be expressed
in terms of T, K, S00, and the r largest eigenvalues

Lc = −1

2
T
{
K ln(2π) +K + ln(|S00|) +

r∑
i=1

ln(1− λ̂i)
}

where the λ̂i are the eigenvalues that solve (7), (8), and (9).

Using the normalized β̂, we can then obtain the estimates

α̂ = S01β̂(β̂
′
S11β̂)−1 (10)

and
Ω̂ = S00 − α̂β̂

′
S10

Let β̂y be a K × r matrix that contains the estimates of the parameters in β in (1). β̂y differs
from β̂ in that any trend parameter estimates are omitted from β̂. We can then use β̂y to obtain
predicted values for the r nondemeaned cointegrating equations

̂̃
Et = β̂

′
yyt
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The r series in ̂̃Et are called the predicted, nondemeaned cointegrating equations because they still
contain the terms µ and ρ. We want to work with the predicted, demeaned cointegrating equations.
Thus we need estimates of µ and ρ. In the trend(rconstant) specification, the algorithm directly
produces the estimator µ̂. Similarly, in the trend(rtrend) specification, the algorithm directly
produces the estimator ρ̂. In the remaining cases, to back out estimates of µ and ρ, we need estimates
of v and δ, which we can obtain by estimating the parameters of the following VAR:

∆yt = α
̂̃
Et−1 +

p−1∑
i=1

Γi∆yt−i + v + δt+ w1s1 + · · ·+ wmsm + εt (11)

Depending on the trend specification, we use α̂ to back out the estimates of

µ̂ = (α̂′α̂)−1α̂′v̂ (12)

ρ̂ = (α̂′α̂)−1α̂′δ̂ (13)

if they are not already in β̂ and are included in the trend specification.

We then augment β̂y to

β̂
′
f = (β̂

′
y, µ̂, ρ̂)

where the estimates of µ̂ and ρ̂ are either obtained from β̂ or backed out using (12) and (13). We
next use β̂f to obtain the r predicted, demeaned cointegrating equations, Êt, via

Êt = β̂
′
f (y′t, 1, t)

′

We last obtain estimates of all the short-run parameters from the VAR:

∆yt = αÊt−1 +

p−1∑
i=1

Γi∆yt−i + γ+ τt+ w1s1 + · · ·+ wmsm + εt (14)

Because the estimator β̂f converges in probability to its true value at a rate faster than T−
1
2 , we

can take our estimated Êt−1 as given data in (14). This allows us to estimate the variance–covariance
(VCE) matrix of the estimates of the parameters in (14) by using the standard VAR VCE estimator.
Equation (11) can be used to obtain consistent estimates of all the parameters and of the VCE of all
the parameters, except v and δ. The standard VAR VCE of v̂ and δ̂ is incorrect because these estimates
converge at a faster rate. This is why it is important to use the predicted, demeaned cointegrating
equations, Êt−1, when estimating the short-run parameters and trend terms. In keeping with the
cointegration literature, vec makes a small-sample adjustment to the VCE estimator so that the divisor
is (T − d) instead of T , where d represents the degrees of freedom of the model. d is calculated as
the integer part of nparms/K, where nparms is the total number of freely estimated parameters in
the model.

In the trend(rconstant) specification, the estimation procedure directly estimates µ. For
trend(constant), trend(rtrend), and trend(trend), the estimates of µ are backed out us-
ing (12). In the trend(rtrend) specification, the estimation procedure directly estimates ρ. In the
trend(trend) specification, the estimates of ρ are backed out using (13). Because the elements of
the estimated VCE are readily available only when the estimates are obtained directly, when the trend
parameter estimates are backed out, their elements in the VCE for β̂f are missing.



vec — Vector error-correction models 891

Under the Johansen identification restrictions, vec obtains β̂, the estimates of the parameters in
the r×m1 matrix β̃

′
in (5). The VCE of vec(β̂) is rm1× rm1. Per Johansen (1995), the asymptotic

distribution of β̂ is mixed Gaussian, and its VCE is consistently estimated by(
1

T − d

)
(Ir ⊗HJ)

{
(α̂′Ω−1α̂)⊗ (H′JS11HJ)

}−1
(Ir ⊗HJ)′ (15)

where HJ is the m1× (m1− r) matrix given by HJ = (0′r×(m1−r), Im1−r)
′. The VCE reported in

e(V beta) is the estimated VCE in (15) augmented with missing values to account for any backed-out
estimates of µ or ρ.

The parameter estimates α̂ can be found either as a function of β̂, using (10) or from the VAR in
(14). The estimated VCE of α̂ reported in e(V alpha) is given by

1

(T − d)
Ω̂⊗ Σ̂B

where Σ̂B = (β̂
′
S11β̂)−1.

As we would expect, the estimator of Π = αβ′ is

Π̂ = α̂β̂
′

and its estimated VCE is given by
1

(T − d)
Ω̂⊗ (β̂Σ̂Bβ̂

′
)

The moving-average impact matrix C is estimated by

Ĉ = β̂⊥(α̂⊥Γ̂β̂⊥)−1α̂′⊥

where β̂⊥ is the orthogonal complement of β̂y , α̂⊥ is the orthogonal complement of α̂, and
Γ̂ = IK −

∑p−1
i=1 Γi. The orthogonal complement of a K × r matrix Q that has rank r is a matrix

Q⊥ of rank K− r, such that Q′Q⊥ = 0. Although this operation is not uniquely defined, the results
used by vec do not depend on the method of obtaining the orthogonal complement. vec uses the
following method: the orthogonal complement of Q is given by the r eigenvectors with the highest
eigenvalues from the matrix Q′(Q′Q)−1Q′.

Per Johansen (1995, chap. 13) and Drukker (2004), the VCE of Ĉ is estimated by

T − d
T

ŜqV̂ν̂Ŝ′q (16)

where

Ŝq = Ĉ⊗ ξ̂

ξ̂ =

{
(ξ̂1, ξ̂2) if p > 1
ξ̂1 if p = 1

ξ̂1 = (Ĉ′Γ̂
′
− IK)ᾱ

ᾱ = α̂(α̂′α̂)−1

ξ̂2 = ιp−1 ⊗ Ĉ

ιp−1 is a (p− 1)× 1 vector of ones

V̂ν̂ is the estimated VCE of ν̂ = (α̂, Γ̂1, . . . Γ̂p−1)
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Estimation with constraints: β identified

vec can also fit models in which the adjustment parameters are subject to homogeneous linear
constraints and the cointegrating vectors are subject to general linear restrictions. Mathematically,
vec allows for constraints of the form

R′αvec(α) = 0 (17)

where Rα is a known Kr × nα constraint matrix, and

R′
β̃

vec(β̃) = b (18)

where R
β̃

is a known m1r × nβ constraint matrix and b is a known nβ × 1 vector of constants.

Although (17) and (18) are intuitive, they can be rewritten in a form to facilitate computation.
Specifically, (17) can be written as

vec(α′) = Ga (19)

where G is Kr × nα and a is nα × 1. Equation (18) can be rewritten as

vec(β̃) = Hb + h0 (20)

where H is a known n1r × nβ matrix, b is an nβ × 1 matrix of parameters, and h0 is a known
n1r× 1 matrix. See [P] makecns for a discussion of the different ways of specifying the constraints.

When constraints are specified via the aconstraints() and bconstraints() options, the
Boswijk (1995) rank method determines whether the parameters in β̃ are underidentified, exactly
identified, or overidentified.

Boswijk (1995) uses the Rothenberg (1971) method to determine whether the parameters in β̃ are
identified. Thus the parameters in β̃ are exactly identified if ρβ = r2, and the parameters in β̃ are
overidentified if ρβ > r2, where

ρβ = rank

{
R
β̃

(Ir ⊗ β̈)

}
and β̈ is a full-rank matrix with the same dimensions as β̃. The computed ρβ is stored in
e(beta icnt).

Similarly, the number of freely estimated parameters in α and β̃ is given by ρjacob, where

ρjacob = rank
{

(α̂⊗ Im1
)H, (IK ⊗ β̂)G

}
Using ρjacob, we can calculate several other parameter counts of interest. In particular, the degrees of
freedom of the overidentifying test are given by (K +m1 − r)r − ρjacob, and the number of freely
estimated parameters in the model is nparms = Km2 + ρjacob.

Although the problem of maximizing the log-likelihood function in (4), subject to the constraints in
(17) and (18), could be handled by the algorithms in [R] ml, the switching algorithm of Boswijk (1995)
has proven to be more convergent. For this reason, vec uses the Boswijk (1995) switching algorithm
to perform the optimization.
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Given starting values (b̂0, â0, Ω̂0), the algorithm iteratively updates the estimates until convergence
is achieved, as follows:

α̂j is constructed from (19) and âj

β̂j is constructed from (20) and b̂j

b̂j+1 = {H′(α̂′jΩ̂
−1

j α̂j ⊗ S11)H}−1H′(α̂jΩ̂
−1

j ⊗ S11){vec(P̂)− (α̂j ⊗ InZ1
)h0}

âj+1 = {G(Ω̂
−1

j ⊗ β̂jS11β̂j)G}−1G′(Ω̂
−1

j ⊗ β̂jS11)vec(P̂)

Ω̂j+1 = S00 − S01β̂jα̂
′
j − α̂jβ̂

′
jS10 + α̂jβ̂

′
jS11β̂jα̂

′
j

The estimated VCE of β̂ is given by

1

(T − d)
H{H′(W ⊗ S11)H}−1H′

where W is α̂′Ω̂
−1
α̂. As in the case without constraints, the estimated VCE of α̂ can be obtained

either from the VCE of the short-run parameters, as described below, or via the formula

V̂α̂ =
1

(T − d)
G

[
G′
{
Ω̂
−1
⊗ (β̂

′
S11β̂)G

}−1
]
G′

Boswijk (1995) notes that, as long as the parameters of the cointegrating equations are exactly
identified or overidentified, the constrained ML estimator produces superconsistent estimates of β̃.
This implies that the method of estimating the short-run parameters described above applies in the
presence of constraints, as well, albeit with a caveat: when there are constraints placed on α, the
VARs must be estimated subject to these constraints.

With these estimates and the estimated VCE of the short-run parameter matrix V̂ν̂, Drukker (2004)

shows that the estimated VCE for Π̂ is given by

(β̂⊗ IK)V̂α̂(β̂⊗ IK)′

Drukker (2004) also shows that the estimated VCE of Ĉ can be obtained from (16) with the extension
that V̂ν̂ is the estimated VCE of ν̂ that takes into account any constraints on α̂.

Estimation with constraints: β not identified
When the parameters in β are not identified, only the parameters in Π = αβ and C are identified.

The estimates of Π and C would not change if more identification restrictions were imposed to
achieve exact identification. Thus the VCE matrices for Π̂ and Ĉ can be derived as if the model
exactly identified β.
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Formulas for the information criteria
The AIC, SBIC, and HQIC are calculated according to their standard definitions, which include the

constant term from the log likelihood; that is,

AIC =− 2

(
L

T

)
+

2nparms

T

SBIC =− 2

(
L

T

)
+

ln(T )

T
nparms

HQIC =− 2

(
L

T

)
+

2ln
{

ln(T )
}

T
nparms

where nparms is the total number of parameters in the model and L is the value of the log likelihood
at the optimum.

Formulas for predict

xb, residuals and stdp are standard and are documented in [R] predict. ce causes predict to
compute Êt = β̂fyt for the requested cointegrating equation.

levels causes predict to compute the predictions for the levels of the data. Let ŷdt be the
predicted value of ∆yt. Because the computations are performed for a given equation, yt is a scalar.
Using ŷdt , we can predict the level by ŷt = ŷdt + yt−1.

Because the residuals from the VECM for the differences and the residuals from the corresponding
VAR in levels are identical, there is no need for an option for predicting the residuals in levels.
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vec postestimation — Postestimation tools for vec

Postestimation commands predict margins Remarks and examples
Also see

Postestimation commands
The following postestimation commands are of special interest after vec:

Command Description

fcast compute obtain dynamic forecasts
fcast graph graph dynamic forecasts obtained from fcast compute

irf create and analyze IRFs and FEVDs
veclmar LM test for autocorrelation in residuals
vecnorm test for normally distributed residuals
vecstable check stability condition of estimates

The following standard postestimation commands are also available:

Command Description

estat ic Akaike’s and Schwarz’s Bayesian information criteria (AIC and BIC)
estat summarize summary statistics for the estimation sample
estat vce variance–covariance matrix of the estimators (VCE)
estimates cataloging estimation results
forecast dynamic forecasts and simulations
lincom point estimates, standard errors, testing, and inference for linear combinations of

coefficients
lrtest likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict linear predictions and their SEs; residuals
predictnl point estimates, standard errors, testing, and inference for generalized predictions
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses
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predict

Description for predict
predict creates a new variable containing predictions such as expected values, residuals, and

cointegrating equations.

Menu for predict

Statistics > Postestimation

Syntax for predict

predict
[

type
]

newvar
[

if
] [

in
] [

, statistic equation(eqno | eqname)
]

statistic Description

Main

xb fitted value for the specified equation; the default
stdp standard error of the linear prediction
residuals residuals
ce the predicted value of specified cointegrating equation
levels one-step prediction of the level of the endogenous variable
usece(varlistce) compute the predictions using previously predicted cointegrating equations

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for
the estimation sample.

Options for predict� � �
Main �

xb, the default, calculates the fitted values for the specified equation. The form of the VECM implies
that these fitted values are the one-step predictions for the first-differenced variables.

stdp calculates the standard error of the linear prediction for the specified equation.

residuals calculates the residuals from the specified equation of the VECM.

ce calculates the predicted value of the specified cointegrating equation.

levels calculates the one-step prediction of the level of the endogenous variable in the requested
equation.

usece(varlistce) specifies that previously predicted cointegrating equations saved under the names in
varlistce be used to compute the predictions. The number of variables in the varlistce must equal
the number of cointegrating equations specified in the model.

equation(eqno | eqname) specifies to which equation you are referring.

equation() is filled in with one eqno or eqname for xb, residuals, stdp, ce, and levels
options. equation(#1) would mean that the calculation is to be made for the first equation,
equation(#2) would mean the second, and so on. You could also refer to the equation by its
name. equation(D income) would refer to the equation named D income and equation( ce1),
to the first cointegrating equation, which is named ce1 by vec.

If you do not specify equation(), the results are as if you specified equation(#1).

For more information on using predict after multiple-equation estimation commands, see [R] predict.
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margins

Description for margins

margins estimates margins of response for linear predictions.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins
[

marginlist
] [

, options
]

margins
[

marginlist
]
, predict(statistic . . . )

[
predict(statistic . . . ) . . .

] [
options

]
statistic Description

default linear predictions for each equation
xb linear prediction for a specified equation
stdp not allowed with margins

residuals not allowed with margins

ce not allowed with margins

levels not allowed with margins

usece(varlistce) not allowed with margins

xb defaults to the first equation.

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Remarks and examples
Remarks are presented under the following headings:

Model selection and inference
Forecasting

Model selection and inference
See the following sections for information on model selection and inference after vec.

[TS] irf — Create and analyze IRFs, dynamic-multiplier functions, and FEVDs
[TS] varsoc — Obtain lag-order selection statistics for VARs and VECMs
[TS] veclmar — LM test for residual autocorrelation after vec
[TS] vecnorm — Test for normally distributed disturbances after vec
[TS] vecrank — Estimate the cointegrating rank of a VECM
[TS] vecstable — Check the stability condition of VECM estimates
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Forecasting

See the following sections for information on obtaining forecasts after vec:

[TS] fcast compute — Compute dynamic forecasts after var, svar, or vec
[TS] fcast graph — Graph forecasts after fcast compute

Also see
[TS] vec — Vector error-correction models

[TS] vec intro — Introduction to vector error-correction models

[U] 20 Estimation and postestimation commands
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veclmar — LM test for residual autocorrelation after vec

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Reference Also see

Description

veclmar implements a Lagrange multiplier (LM) test for autocorrelation in the residuals of vector
error-correction models (VECMs).

Quick start
Test of residual autocorrelation for the first two lags of the residuals after vec

veclmar

As above, but test the first 5 lags
veclmar, mlag(5)

As above, but perform test using stored estimates myest from a VECM

veclmar, mlag(5) estimates(myest)

Menu
Statistics > Multivariate time series > VEC diagnostics and tests > LM test for residual autocorrelation

900



veclmar — LM test for residual autocorrelation after vec 901

Syntax

veclmar
[
, options

]
options Description

mlag(#) use # for the maximum order of autocorrelation; default is mlag(2)

estimates(estname) use previously stored results estname; default is to use active results
separator(#) draw separator line after every # rows

veclmar can be used only after vec; see [TS] vec.
You must tsset your data before using veclmar; see [TS] tsset.
collect is allowed; see [U] 11.1.10 Prefix commands.

Options
mlag(#) specifies the maximum order of autocorrelation to be tested. The integer specified in mlag()

must be greater than 0; the default is 2.

estimates(estname) requests that veclmar use the previously obtained set of vec estimates stored
as estname. By default, veclmar uses the active results. See [R] estimates for information on
manipulating estimation results.

separator(#) specifies how many rows should appear in the table between separator lines. By
default, separator lines do not appear. For example, separator(1) would draw a line between
each row, separator(2) between every other row, and so on.

Remarks and examples
Estimation, inference, and postestimation analysis of VECMs is predicated on the errors’ not being

autocorrelated. veclmar implements the LM test for autocorrelation in the residuals of a VECM
discussed in Johansen (1995, 21–22). The test is performed at lags j = 1, . . . , mlag(). For each j,
the null hypothesis of the test is that there is no autocorrelation at lag j.

Example 1

We fit a VECM using the regional income data described in [TS] vec and then call veclmar to test
for autocorrelation.

. use https://www.stata-press.com/data/r17/rdinc

. vec ln_ne ln_se

(output omitted )

. veclmar, mlag(4)

Lagrange-multiplier test

lag chi2 df Prob > chi2

1 8.9586 4 0.06214
2 4.9809 4 0.28926
3 4.8519 4 0.30284
4 0.3270 4 0.98801

H0: no autocorrelation at lag order
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At the 5% level, we cannot reject the null hypothesis that there is no autocorrelation in the residuals
for any of the orders tested. Thus this test finds no evidence of model misspecification.

Stored results
veclmar stores the following in r():

Matrices
r(lm) χ2, df, and p-values

Methods and formulas
Consider a VECM without any trend:

∆yt = αβyt−1 +

p−1∑
i=1

Γi∆yt−i + εt

As discussed in [TS] vec, as long as the parameters in the cointegrating vectors, β, are exactly
identified or overidentified, the estimates of these parameters are superconsistent. This implies that
the r × 1 vector of estimated cointegrating relations

Êt = β̂yt (1)

can be used as data with standard estimation and inference methods. When the parameters of the
cointegrating equations are not identified, (1) does not provide consistent estimates of Êt; in these
cases, veclmar exits with an error message.

The VECM above can be rewritten as

∆yt = αÊt +

p−1∑
i=1

Γi∆yt−i + εt

which is just a VAR with p− 1 lags where the endogenous variables have been first-differenced and
is augmented with the exogenous variables Ê. veclmar fits this VAR and then calls varlmar to
compute the LM test for autocorrelation.

The above discussion assumes no trend and implicitly ignores constraints on the parameters in
α. As discussed in vec, the other four trend specifications considered by Johansen (1995, sec. 5.7)
complicate the estimation of the free parameters in β but do not alter the basic result that the Êt can
be used as data in the subsequent VAR. Similarly, constraints on the parameters in α imply that the
subsequent VAR must be estimated with these constraints applied, but Êt can still be used as data in
the VAR.

See [TS] varlmar for more information on the Johansen LM test.
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Reference
Johansen, S. 1995. Likelihood-Based Inference in Cointegrated Vector Autoregressive Models. Oxford: Oxford University

Press.

Also see
[TS] varlmar — LM test for residual autocorrelation after var or svar

[TS] vec — Vector error-correction models

[TS] vec intro — Introduction to vector error-correction models



Title

vecnorm — Test for normally distributed disturbances after vec

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

vecnorm computes and reports a series of statistics against the null hypothesis that the disturbances
in a VECM are normally distributed.

Quick start
Compute Jarque–Bera, skewness, and kurtosis statistics after vec to test the null hypothesis that the

residuals are normally distributed
vecnorm

As above, but only report the Jarque–Bera statistic
vecnorm, jbera

As above, but only report kurtosis
vecnorm, kurtosis

Menu
Statistics > Multivariate time series > VEC diagnostics and tests > Test for normally distributed disturbances
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Syntax

vecnorm
[
, options

]
options Description

jbera report Jarque–Bera statistic; default is to report all three statistics
skewness report skewness statistic; default is to report all three statistics
kurtosis report kurtosis statistic; default is to report all three statistics
estimates(estname) use previously stored results estname; default is to use active results
dfk make small-sample adjustment when computing the estimated

variance–covariance matrix of the disturbances
separator(#) draw separator line after every # rows

vecnorm can be used only after vec; see [TS] vec.
collect is allowed; see [U] 11.1.10 Prefix commands.

Options
jbera requests that the Jarque–Bera statistic and any other explicitly requested statistic be reported.

By default, the Jarque–Bera, skewness, and kurtosis statistics are reported.

skewness requests that the skewness statistic and any other explicitly requested statistic be reported.
By default, the Jarque–Bera, skewness, and kurtosis statistics are reported.

kurtosis requests that the kurtosis statistic and any other explicitly requested statistic be reported.
By default, the Jarque–Bera, skewness, and kurtosis statistics are reported.

estimates(estname) requests that vecnorm use the previously obtained set of vec estimates stored
as estname. By default, vecnorm uses the active results. See [R] estimates for information on
manipulating estimation results.

dfk requests that a small-sample adjustment be made when computing the estimated variance–
covariance matrix of the disturbances.

separator(#) specifies how many rows should appear in the table between separator lines. By
default, separator lines do not appear. For example, separator(1) would draw a line between
each row, separator(2) between every other row, and so on.

Remarks and examples
vecnorm computes a series of test statistics of the null hypothesis that the disturbances in a VECM

are normally distributed. For each equation and all equations jointly, up to three statistics may be
computed: a skewness statistic, a kurtosis statistic, and the Jarque–Bera statistic. By default, all three
statistics are reported; if you specify only one statistic, the others are not reported. The Jarque–Bera
statistic tests skewness and kurtosis jointly. The single-equation results are against the null hypothesis
that the disturbance for that particular equation is normally distributed. The results for all the equations
are against the null that all K disturbances have a K-dimensional multivariate normal distribution.
Failure to reject the null hypothesis indicates lack of model misspecification.

As noted by Johansen (1995, 141), the log likelihood for the VECM is derived assuming the errors
are independent and identically distributed normal, though many of the asymptotic properties can be
derived under the weaker assumption that the errors are merely independent and identically distributed.
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Many researchers still prefer to test for normality. vecnorm uses the results from vec to produce
a series of statistics against the null hypothesis that the K disturbances in the VECM are normally
distributed.

Example 1

This example uses vecnorm to test for normality after estimating the parameters of a VECM using
the regional income data.

. use https://www.stata-press.com/data/r17/rdinc

. vec ln_ne ln_se
(output omitted )

. vecnorm

Jarque-Bera test

Equation chi2 df Prob > chi2

D_ln_ne 0.094 2 0.95417
D_ln_se 0.586 2 0.74608

ALL 0.680 4 0.95381

Skewness test

Equation Skewness chi2 df Prob > chi2

D_ln_ne .05982 0.032 1 0.85890
D_ln_se .243 0.522 1 0.47016

ALL 0.553 2 0.75835

Kurtosis test

Equation Kurtosis chi2 df Prob > chi2

D_ln_ne 3.1679 0.062 1 0.80302
D_ln_se 2.8294 0.064 1 0.79992

ALL 0.126 2 0.93873

The Jarque–Bera results present test statistics for each equation and for all equations jointly
against the null hypothesis of normality. For the individual equations, the null hypothesis is that the
disturbance term in that equation has a univariate normal distribution. For all equations jointly, the
null hypothesis is that the K disturbances come from a K-dimensional normal distribution. In this
example, the single-equation and overall Jarque–Bera statistics do not reject the null of normality.

The single-equation skewness test statistics are of the null hypotheses that the disturbance term
in each equation has zero skewness, which is the skewness of a normally distributed variable. The
row marked ALL shows the results for a test that the disturbances in all equations jointly have zero
skewness. The skewness results shown above do not suggest nonnormality.

The kurtosis of a normally distributed variable is three, and the kurtosis statistics presented in the
table test the null hypothesis that the disturbance terms have kurtosis consistent with normality. The
results in this example do not reject the null hypothesis.

The statistics computed by vecnorm are based on the estimated variance–covariance matrix of the
disturbances. vec saves the ML estimate of this matrix, which vecnorm uses by default. Specifying
the dfk option instructs vecnorm to make a small-sample adjustment to the variance–covariance
matrix before computing the test statistics.
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Stored results
vecnorm stores the following in r():

Macros
r(dfk) dfk, if specified

Matrices
r(jb) Jarque–Bera χ2, df, and p-values
r(skewness) skewness χ2, df, and p-values
r(kurtosis) kurtosis χ2, df, and p-values

Methods and formulas
As discussed in Methods and formulas of [TS] vec, a cointegrating VECM can be rewritten as a

VAR in first differences that includes the predicted cointegrating equations as exogenous variables.
vecnorm computes the tests discussed in [TS] varnorm for the corresponding augmented VAR in first
differences. See Methods and formulas of [TS] veclmar for more information on this approach.

When the parameters of the cointegrating equations are not identified, the consistent estimates
of the cointegrating equations are not available, and, in these cases, vecnorm exits with an error
message.

References
Hamilton, J. D. 1994. Time Series Analysis. Princeton, NJ: Princeton University Press.

Jarque, C. M., and A. K. Bera. 1987. A test for normality of observations and regression residuals. International
Statistical Review 2: 163–172. https://doi.org/10.2307/1403192.

Johansen, S. 1995. Likelihood-Based Inference in Cointegrated Vector Autoregressive Models. Oxford: Oxford University
Press.

Lütkepohl, H. 2005. New Introduction to Multiple Time Series Analysis. New York: Springer.

Also see
[TS] varnorm — Test for normally distributed disturbances after var or svar

[TS] vec — Vector error-correction models

[TS] vec intro — Introduction to vector error-correction models

https://doi.org/10.2307/1403192
http://www.stata.com/bookstore/imtsa.html


Title

vecrank — Estimate the cointegrating rank of a VECM

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

vecrank produces statistics used to determine the number of cointegrating equations in a vector
error-correction model (VECM).

Quick start
Estimate the cointegrating rank for a VECM of y1, y2, and y3 using tsset data

vecrank y1 y2 y3

As above, but specify that the underlying VAR model has 6 lags
vecrank y1 y2 y3, lags(6)

As above, but specify that the model includes a linear trend in the cointegrating equations and a
quadratic trend in the undifferenced data

vecrank y1 y2 y3, lags(6) trend(trend)

As above, and report information criteria
vecrank y1 y2 y3, lags(6) trend(trend) ic

Menu
Statistics > Multivariate time series > Cointegrating rank of a VECM
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Syntax

vecrank depvarlist
[

if
] [

in
] [

, options
]

options Description

Model

lags(#) use # for the maximum lag in underlying VAR model
trend(constant) include an unrestricted constant in model; the default
trend(rconstant) include a restricted constant in model
trend(trend) include a linear trend in the cointegrating equations and a

quadratic trend in the undifferenced data
trend(rtrend) include a restricted trend in model
trend(none) do not include a trend or a constant

Adv. model

sindicators(varlistsi) include normalized seasonal indicator variables varlistsi
noreduce do not perform checks and corrections for collinearity among lags

of dependent variables

Reporting

notrace do not report the trace statistic
max report maximum-eigenvalue statistic
ic report information criteria
level99 report 1% critical values instead of 5% critical values
levela report both 1% and 5% critical values

You must tsset your data before using vecrank; see [TS] tsset.
depvar may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by, collect, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.
vecrank does not allow gaps in the data.

Options

� � �
Model �

lags(#) specifies the number of lags in the VAR representation of the model. The VECM will include
one fewer lag of the first differences. The number of lags must be greater than zero but small
enough so that the degrees of freedom used by the model are less than the number of observations.

trend(trend spec) specifies one of five trend specifications to include in the model. See [TS] vec
intro and [TS] vec for descriptions. The default is trend(constant).

� � �
Adv. model �

sindicators(varlistsi) specifies normalized seasonal indicator variables to be included in the model.
The indicator variables specified in this option must be normalized as discussed in Johansen (1995,
84). If the indicators are not properly normalized, the likelihood-ratio–based tests for the number
of cointegrating equations do not converge to the asymptotic distributions derived by Johansen.
For details, see Methods and formulas of [TS] vec. sindicators() cannot be specified with
trend(none) or trend(rconstant)
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noreduce causes vecrank to skip the checks and corrections for collinearity among the lags of
the dependent variables. By default, vecrank checks whether the current lag specification causes
some of the regressions performed by vecrank to contain perfectly collinear variables and reduces
the maximum lag until the perfect collinearity is removed. See Collinearity in [TS] vec for more
information.

� � �
Reporting �

notrace requests that the output for the trace statistic not be displayed. The default is to display the
trace statistic.

max requests that the output for the maximum-eigenvalue statistic be displayed. The default is to not
display this output.

ic causes the output for the information criteria to be displayed. The default is to not display this
output.

level99 causes the 1% critical values to be displayed instead of the default 5% critical values.

levela causes both the 1% and the 5% critical values to be displayed.

Remarks and examples
Remarks are presented under the following headings:

Introduction
The trace statistic
The maximum-eigenvalue statistic
Minimizing an information criterion

Introduction

Before estimating the parameters of a VECM models, you must choose the number of lags in the
underlying VAR, the trend specification, and the number of cointegrating equations. vecrank offers
several ways of determining the number of cointegrating vectors conditional on a trend specification
and lag order.

vecrank implements three types of methods for determining r, the number of cointegrating
equations in a VECM. The first is Johansen’s “trace” statistic method. The second is his “maximum
eigenvalue” statistic method. The third method chooses r to minimize an information criterion.

All three methods are based on Johansen’s maximum likelihood (ML) estimator of the parameters
of a cointegrating VECM. The basic VECM is

∆yt = αβ′yt−1 +

p−1∑
t=1

Γi∆yt−i + εt

where y is a (K × 1) vector of I(1) variables, α and β are (K × r) parameter matrices with rank
r < K, Γ1, . . . ,Γp−1 are (K ×K) matrices of parameters, and εt is a (K × 1) vector of normally
distributed errors that is serially uncorrelated but has contemporaneous covariance matrix Ω.

Building on the work of Anderson (1951), Johansen (1995) derives an ML estimator for the
parameters and two likelihood-ratio (LR) tests for inference on r. These LR tests are known as the
trace statistic and the maximum-eigenvalue statistic because the log likelihood can be written as the
log of the determinant of a matrix plus a simple function of the eigenvalues of another matrix.
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Let λ1, . . . , λK be the K eigenvalues used in computing the log likelihood at the optimum.
Furthermore, assume that these eigenvalues are sorted from the largest λ1 to the smallest λK . If there
are r < K cointegrating equations, α and β have rank r and the eigenvalues λr+1, . . . , λK are zero.

The trace statistic
The null hypothesis of the trace statistic is that there are no more than r cointegrating relations.

Restricting the number of cointegrating equations to be r or less implies that the remaining K − r
eigenvalues are zero. Johansen (1995, chap. 11 and 12) derives the distribution of the trace statistic

−T
K∑

i=r+1

ln(1− λ̂i)

where T is the number of observations and the λ̂i are the estimated eigenvalues. For any given value
of r, large values of the trace statistic are evidence against the null hypothesis that there are r or
fewer cointegrating relations in the VECM.

One of the problems in determining the number of cointegrating equations is that the process
involves more than one statistical test. Johansen (1995, chap. 6, 11, and 12) derives a method based
on the trace statistic that has nominal coverage despite evaluating multiple tests. This method can
be interpreted as being an estimator r̂ of the true number of cointegrating equations r0. The method
starts testing at r = 0 and accepts as r̂ the first value of r for which the trace statistic fails to reject
the null.

Example 1

We have quarterly data on the natural logs of aggregate consumption, investment, and GDP in
the United States from the first quarter of 1959 through the fourth quarter of 1982. As discussed in
King et al. (1991), the balanced-growth hypothesis in economics implies that we would expect to
find two cointegrating equations among these three variables. In the output below, we use vecrank
to determine the number of cointegrating equations using Johansen’s multiple-trace test method.
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. use https://www.stata-press.com/data/r17/balance2
(macro data for VECM/balance study)

. vecrank y i c, lags(5)

Johansen tests for cointegration
Trend: Constant Number of obs = 91
Sample: 1960q2 thru 1982q4 Number of lags = 5

Critical
Maximum Trace value

rank Params LL Eigenvalue statistic 5%
0 39 1231.1041 . 46.1492 29.68
1 44 1245.3882 0.26943 17.5810 15.41
2 47 1252.5055 0.14480 3.3465* 3.76
3 48 1254.1787 0.03611

* selected rank

The header produces information about the sample, the trend specification, and the number of
lags included in the model. The main table contains a separate row for each possible value of r, the
number of cointegrating equations. When r = 3, all three variables in this model are stationary.

In this example, because the trace statistic at r = 0 of 46.1492 exceeds its critical value of 29.68,
we reject the null hypothesis of no cointegrating equations. Similarly, because the trace statistic at
r = 1 of 17.581 exceeds its critical value of 15.41, we reject the null hypothesis that there is one or
fewer cointegrating equation. In contrast, because the trace statistic at r = 2 of 3.3465 is less than its
critical value of 3.76, we cannot reject the null hypothesis that there are two or fewer cointegrating
equations. Because Johansen’s method for estimating r is to accept as r̂ the first r for which the null
hypothesis is not rejected, we accept r = 2 as our estimate of the number of cointegrating equations
between these three variables. The “*” by the trace statistic at r = 2 indicates that this is the value
of r selected by Johansen’s multiple-trace test procedure. The eigenvalue shown in the last line of
output computes the trace statistic in the preceding line.

Example 2

In the previous example, we used the default 5% critical values. We can estimate r with 1%
critical values instead by specifying the level99 option.

. vecrank y i c, lags(5) level99

Johansen tests for cointegration
Trend: Constant Number of obs = 91
Sample: 1960q2 thru 1982q4 Number of lags = 5

Critical
Maximum Trace value

rank Params LL Eigenvalue statistic 1%
0 39 1231.1041 . 46.1492 35.65
1 44 1245.3882 0.26943 17.5810* 20.04
2 47 1252.5055 0.14480 3.3465 6.65
3 48 1254.1787 0.03611

* selected rank

The output indicates that switching from the 5% to the 1% level changes the resulting estimate from
r = 2 to r = 1.
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The maximum-eigenvalue statistic

The alternative hypothesis of the trace statistic is that the number of cointegrating equations is
strictly larger than the number r assumed under the null hypothesis. Instead, we could assume a
given r under the null hypothesis and test this against the alternative that there are r+ 1 cointegrating
equations. Johansen (1995, chap. 6, 11, and 12) derives an LR test of the null of r cointegrating
relations against the alternative of r+ 1 cointegrating relations. Because the part of the log likelihood
that changes with r is a simple function of the eigenvalues of a (K ×K) matrix, this test is known
as the maximum-eigenvalue statistic. This method is used less often than the trace statistic method
because no solution to the multiple-testing problem has yet been found.

Example 3

In the output below, we reexamine the balanced-growth hypothesis. We use the levela option to
obtain both the 5% and 1% critical values, and we use the notrace option to suppress the table of
trace statistics.

. vecrank y i c, lags(5) max levela notrace

Johansen tests for cointegration
Trend: Constant Number of obs = 91
Sample: 1960q2 thru 1982q4 Number of lags = 5

Maximum Eigenvalue Critical value
rank Params LL Maximum 5% 1%

0 39 1231.1041 28.5682 20.97 25.52
1 44 1245.3882 0.26943 14.2346 14.07 18.63
2 47 1252.5055 0.14480 3.3465 3.76 6.65
3 48 1254.1787 0.03611

We can reject r = 1 in favor of r = 2 at the 5% level but not at the 1% level. As with the trace
statistic method, whether we choose to specify one or two cointegrating equations in our VECM will
depend on the significance level we use here.

Minimizing an information criterion

Many multiple-testing problems in the time-series literature have been solved by defining an
estimator that minimizes an information criterion with known asymptotic properties. Selecting the lag
length in an autoregressive model is probably the best-known example. Gonzalo and Pitarakis (1998)
and Aznar and Salvador (2002) have shown that this approach can be applied to determining the
number of cointegrating equations in a VECM. As in the lag-length selection problem, choosing the
number of cointegrating equations that minimizes either the Schwarz Bayesian information criterion
(SBIC) or the Hannan and Quinn information criterion (HQIC) provides a consistent estimator of the
number of cointegrating equations.

Example 4

We use these information-criteria methods to estimate the number of cointegrating equations in
our balanced-growth data.
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. vecrank y i c, lags(5) ic notrace

Johansen tests for cointegration
Trend: Constant Number of obs = 91
Sample: 1960q2 thru 1982q4 Number of lags = 5

Maximum
rank Params LL Eigenvalue SBIC HQIC AIC

0 39 1231.1041 -25.12401 -25.76596 -26.20009
1 44 1245.3882 0.26943 -25.19009 -25.91435 -26.40414
2 47 1252.5055 0.14480 -25.19781* -25.97144* -26.49463
3 48 1254.1787 0.03611 -25.18501 -25.97511 -26.50942

* selected rank

Both the SBIC and the HQIC estimators suggest that there are two cointegrating equations in the
balanced-growth data.

Stored results
vecrank stores the following in e():

Scalars
e(N) number of observations
e(k eq) number of equations in e(b)
e(k dv) number of dependent variables
e(tmin) minimum time
e(tmax) maximum time
e(n lags) number of lags
e(k ce95) number of cointegrating equations chosen by multiple trace tests with level(95)
e(k ce99) number of cointegrating equations chosen by multiple trace tests with level(99)
e(k cesbic) number of cointegrating equations chosen by minimizing SBIC
e(k cehqic) number of cointegrating equations chosen by minimizing HQIC

Macros
e(cmd) vecrank
e(cmdline) command as typed
e(trend) trend specified
e(reduced lags) list of maximum lags to which the model has been reduced
e(reduce opt) noreduce, if noreduce is specified
e(tsfmt) format for current time variable

Matrices
e(max) vector of maximum-eigenvalue statistics
e(trace) vector of trace statistics
e(ll) vector of model log likelihoods
e(lambda) vector of eigenvalues
e(k rank) vector of numbers of unconstrained parameters
e(hqic) vector of HQIC values
e(sbic) vector of SBIC values
e(aic) vector of AIC values
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Methods and formulas
As shown in Methods and formulas of [TS] vec, given a lag, trend, and seasonal specification

when there are 0 ≤ r ≤ K cointegrating equations, the log likelihood with the Johansen identification
restrictions can be written as

L = −1

2
T

[
K {ln (2π) + 1}+ ln (|S00|) +

r∑
i=1

ln
(

1− λ̂i
)]

(1)

where the (K × K) matrix S00 and the eigenvalues λ̂i are defined in Methods and formulas of
[TS] vec.

The trace statistic compares the null hypothesis that there are r or fewer cointegrating relations with
the alternative hypothesis that there are more than r cointegrating equations. Under the alternative
hypothesis, the log likelihood is

LA = −1

2
T

[
K {ln (2π) + 1}+ ln (|S00|) +

K∑
i=1

ln
(

1− λ̂i
)]

(2)

Thus the LR test that compares the unrestricted model in (2) with the restricted model in (1) is given
by

LRtrace = −T
K∑

i=r+1

ln
(

1− λ̂i
)

As discussed by Johansen (1995), the trace statistic has a nonstandard distribution under the null
hypothesis because the null hypothesis places restrictions on the coefficients on yt−1, which is
assumed to have K − r random-walk components. vecrank reports the Osterwald-Lenum (1992)
critical values.

The maximum-eigenvalue statistic compares the null model containing r cointegrating relations
with the alternative model that has r + 1 cointegrating relations. Thus using these two values for r
in (1) and a few lines of algebra implies that the LR test of this hypothesis is

LRmax = −T ln
(

1− λ̂r+1

)
As for the trace statistic, because this test involves restrictions on the coefficients on a vector of
I(1) variables, the test statistic’s distribution will be nonstandard. vecrank reports the Osterwald-
Lenum (1992) critical values.

The formulas for the AIC, SBIC, and HQIC are given in Methods and formulas of [TS] vec.

� �
Søren Johansen (1939– ) earned degrees in mathematical statistics at the University of Copenhagen,
where he is now based. In addition to making contributions to mathematical statistics, probability
theory, and medical statistics, he has worked mostly in econometrics—in particular, on the theory
of cointegration.� �
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vecstable — Check the stability condition of VECM estimates

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

vecstable checks the eigenvalue stability condition in a vector error-correction model (VECM)
fit using vec.

Quick start
Check eigenvalue stability condition after vec

vecstable

As above, and graph the eigenvalues of the companion matrix
vecstable, graph

As above, and label each eigenvalue with its distance from the unit circle
vecstable, graph dlabel

As above, but label the eigenvalues with their moduli
vecstable, graph modlabel

Menu
Statistics > Multivariate time series > VEC diagnostics and tests > Check stability condition of VEC estimates
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Syntax
vecstable

[
, options

]
options Description

Main

estimates(estname) use previously stored results estname; default is to use active results
amat(matrix name) save the companion matrix as matrix name
graph graph eigenvalues of the companion matrix
dlabel label eigenvalues with the distance from the unit circle
modlabel label eigenvalues with the modulus
marker options change look of markers (color, size, etc.)
rlopts(cline options) affect rendition of reference unit circle
nogrid suppress polar grid circles
pgrid(

[
. . .
]
) specify radii and appearance of polar grid circles; see Options for details

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

vecstable can be used only after vec; see [TS] vec.
collect is allowed; see [U] 11.1.10 Prefix commands.

Options

� � �
Main �

estimates(estname) requests that vecstable use the previously obtained set of vec estimates stored
as estname. By default, vecstable uses the active results. See [R] estimates for information on
manipulating estimation results.

amat(matrix name) specifies a valid Stata matrix name by which the companion matrix can be saved.
The companion matrix is referred to as the A matrix in Lütkepohl (2005) and [TS] varstable. The
default is not to save the companion matrix.

graph causes vecstable to draw a graph of the eigenvalues of the companion matrix.

dlabel labels the eigenvalues with their distances from the unit circle. dlabel cannot be specified
with modlabel.

modlabel labels the eigenvalues with their moduli. modlabel cannot be specified with dlabel.

marker options specify the look of markers. This look includes the marker symbol, the marker size,
and its color and outline; see [G-3] marker options.

rlopts(cline options) affects the rendition of the reference unit circle; see [G-3] cline options.

nogrid suppresses the polar grid circles.

pgrid(
[

numlist
][
, line options

]
)
[
pgrid(

[
numlist

][
, line options

]
) . . .

pgrid(
[

numlist
][
, line options

]
)
]

determines the radii and appearance of the polar grid circles.
By default, the graph includes nine polar grid circles with radii 0.1, 0.2, . . . , 0.9 that have the grid
linestyle. The numlist specifies the radii for the polar grid circles. The line options determine the
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appearance of the polar grid circles; see [G-3] line options. Because the pgrid() option can be
repeated, circles with different radii can have distinct appearances.

� � �
Add plots �

addplot(plot) adds specified plots to the generated graph; see [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see
[G-3] saving option).

Remarks and examples
Inference after vec requires that the cointegrating equations be stationary and that the number

of cointegrating equations be correctly specified. Although the methods implemented in vecrank
identify the number of stationary cointegrating equations, they assume that the individual variables are
I(1). vecstable provides indicators of whether the number of cointegrating equations is misspecified
or whether the cointegrating equations, which are assumed to be stationary, are not stationary.

vecstable is analogous to varstable. vecstable uses the coefficient estimates from the
previously fitted VECM to back out estimates of the coefficients of the corresponding VAR and then
compute the eigenvalues of the companion matrix. See [TS] varstable for details about how the
companion matrix is formed and about how to interpret the resulting eigenvalues for covariance-
stationary VAR models.

If a VECM has K endogenous variables and r cointegrating vectors, there will be K − r unit
moduli in the companion matrix. If any of the remaining moduli computed by vecrank are too close
to one, either the cointegrating equations are not stationary or there is another common trend and
the rank() specified in the vec command is too high. Unfortunately, there is no general distribution
theory that allows you to determine whether an estimated root is too close to one for all the cases
that commonly arise in practice.

Example 1

In example 1 of [TS] vec, we estimated the parameters of a bivariate VECM of the natural logs
of the average disposable incomes in two of the economic regions created by the U.S. Bureau of
Economic Analysis. In that example, we concluded that the predicted cointegrating equation was
probably not stationary. Here we continue that example by refitting that model and using vecstable
to analyze the eigenvalues of the companion matrix of the corresponding VAR.

. use https://www.stata-press.com/data/r17/rdinc

. vec ln_ne ln_se
(output omitted )

. vecstable

Eigenvalue stability condition

Eigenvalue Modulus

1 1
.9477854 .947785
.2545357 + .2312756i .343914
.2545357 - .2312756i .343914

The VECM specification imposes a unit modulus.
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The output contains a table showing the eigenvalues of the companion matrix and their associated
moduli. The table shows that one of the roots is 1. The table footer reminds us that the specified
VECM imposes one unit modulus on the companion matrix.

The output indicates that there is a real root at about 0.95. Although there is no distribution
theory to measure how close this root is to one, per other discussions in the literature (for example,
Johansen [1995, 137–138]), we conclude that the root of 0.95 supports our earlier analysis, in which
we concluded that the predicted cointegrating equation is probably not stationary.

If we had included the graph option with vecstable, the following graph would have been
displayed:
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The VECM specification imposes 1 unit modulus

Roots of the companion matrix

The graph plots the eigenvalues of the companion matrix with the real component on the x axis and
the imaginary component on the y axis. Although the information is the same as in the table, the
graph shows visually how close the root with modulus 0.95 is to the unit circle.

Stored results
vecstable stores the following in r():

Scalars
r(unitmod) number of unit moduli imposed on the companion matrix

Matrices
r(Re) real part of the eigenvalues of A

r(Im) imaginary part of the eigenvalues of A

r(Modulus) moduli of the eigenvalues of A

where A is the companion matrix of the VAR that corresponds to the VECM.

Methods and formulas
vecstable uses the formulas given in Methods and formulas of [TS] irf create to obtain estimates of

the parameters in the corresponding VAR from the vec estimates. With these estimates, the calculations
are identical to those discussed in [TS] varstable. In particular, the derivation of the companion matrix,
A, from the VAR point estimates is given in [TS] varstable.
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